
Looping in C Programming

Dr. Chayan Halder

Assistant Professor

Ramakrishna Mission Vivekananda Centenary College, Kolkata

Introduction

 One of the fundamental properties of a programming language is the
ability to repetitively execute a sequence of statements which is called
decision making and looping. “Decision making and looping” is one of
the most important concepts of computer programming.

 Programs should be able to make decisions based on the condition

provided and then repeat a specific chunk of code or statement again and

again.

 These looping capabilities enable programmers to develop concise
programs containing repetitive processes that could otherwise require an
excessive number of statements. It enable us to repeat a specific section of
code or statement without the use of goto statements .

 In looping a sequence of statements are executed until some conditions for

termination of loop are satisfied.

Loop Segments

 A program loop therefore consists of two segments:

 One known as the body of the loop and the other known as the

control statement. The control statement tests certain conditions

and then directs the repeated execution of the statements contained

in the body of the loop.

Control
Statement

Body of the
Loop

Looping Types

 Depending on the position of the control statement in the loop, a loop

control structure may be classified either as

1. The entry controlled loop

2. The exit controlled loop.

 Based on the nature of the control variables and the kind of value

assigned to, the loops may be classified into two general categories

1. The counter controlled loop

2. The sentinel controlled loop

Entry Controlled Loop

• The types of loop where the test condition is stated before the body of the

loop, are known as the entry controlled loop. So in the case of an entry

controlled loop, the condition is tested before the execution of the loop.

• If the test condition is true, then the loop gets the execution, otherwise not.

For example, the for loop is an entry controlled loop. In the given figure,

the structure of an entry controlled loop is shown.

Entry Controlled Loop- Flowchart

Exit Controlled Loop

• The types of loop where the test condition is stated at the end of the

body of the loop, are know as the exit controlled loops. So, in the case

of the exit controlled loops, the body of the loop gets execution

without testing the given condition for the first time. Then the

condition is tested.

• If it comes true, then the loop gets another execution and

continues till the result of the test condition is not false.

• In case of exit controlled loop the body of the loop is executed

unconditionally for the first time without testing the condition.

• For example, the do statement or the do....while loop is an exit

controlled loop. The structure of an exit controlled loop is given in

the given figure.

Exit Controlled Loop- Flowchart

Entry VS Exit Controlled Loop

• Test condition: Test condition appears at the beginning in entry

controlled loop where Test condition appears at the end in exit controlled

loop.

• Control variable: In entry controlled loop control variable is counter

variable but in exit controlled loop Control variable can be counter &

sentinel variable

• Execution: In entry controlled loop each execution occurs by testing

condition but in exit controlled loop each execution except the first one

occurs by testing condition

Counter Controlled Loop

• The type of loops, where the number of the execution is known in

advance are termed by the counter controlled loop. That means, in this

case, the value of the variable which controls the execution of the loop

is previously known. The control variable is known as counter. The

counter must be initialized, tested and updated properly for the desired

loop operations. The number of times we want to execute the loop may

be a constant or variable.

• A counter controlled loop is also called definite repetition loop because

the number of repetitions is known before the loop begins executing.

• Example : A while loop is an example of counter controlled loop.

Counter Controlled Loop

sum = 0;

n = 1;

while (n <= 10)

{

sum = sum + n*n; n

= n+ 1;

}

• This is a typical example of counter controlled loop. Here, the loop will

be executed exactly 10 times for

n = 1,2,3,......,10

Sentinel Controlled Loop

• The type of loop where the number of execution of the loop is

unknown, is termed by sentinel controlled loop. In this case, the value

of the control variable differs within a limitation and the execution can

be terminated at any moment as the value of the variable is not

controlled by the loop. The control variable in this case is termed by

sentinel variable.

• A sentinel controlled loop is sometimes called indefinite repetition

loop because the number of repetitions is not known before the

loop begins executing.

• Example : The following do....while loop is an example of sentinel

controlled loop.

Sentinel Controlled Loop

do

{

printf(“Input a number.\n”);

scanf("%d", &num);

}

while(num>0);

• In the above example, the loop will be executed till the entered value

of the variable num is not 0 or less then 0. This is a sentinel controlled

loop and here the variable num is a sentinel variable

Counter VS Sentinel Loop

• Number of execution: In counter controlled loop execution occurs

according to the previously known number but in sentinel controlled

loop unknown number of execution occurs

• Condition variable: In counter controlled loop condition variable is

known as counter variable but in sentinel controlled loop condition

variable is known as sentinel variable

• Value and limitation of variable: In counter controlled loop the value

of the variable and the limitation of the condition for the variable both

are strict but in sentinel controlled loop the limitation for the condition

variable is strict but the value of the variable varies in this case

Steps of Looping a Process

• A looping process, in general, would include the following four steps.

The given steps may come at any order depending on the type of the

loop.

1. Setting and initialization of a condition variable.

2. Execution of the statements of the loop.

3. Test for a specified value of the condition variable for execution of the

loop.

4. Incrementing or updating the condition variable.

Types of Loops in C

• The C language supports three types of looping statement:

1. The for statement

2. The do while statement

3. The while do statement

The for Statement

• The for loop is an entry controlled loop. It has the

following structure:

for(initialization; test-condition; increment/decrement)

{

body of the loop;

}

Analyze the for Statement

for The keyword of for loop

Initialization Set the initial value of the loop control

variable

Test-condition Set the condition to control the loop via

loop control variable

Inc/dec Update the value of the loop control variable

Body of the loop Statements to be executed or controlled

under the for loop

Analyze the for Statement

• Initialization is done first using the assignment statements such as i=1

or count=0. where i and count are known as loop control variable.

• The value of the loop control variable is tested using the test condition.

The test condition is a relational expression, such as i < 10 that

determines when the loop will exit. If the condition is true the body of

the loop is executed; otherwise the loop is terminated and the execution

continues with the statement that immediately follows the loop.

• When the body of the loop is executed, the control is transferred back to

the for statement after evaluating the last statement such as

increment/decrement and the new value of the control variable is again

tested to see whether it satisfies the loop condition or not.

Analyze the for Statement

• When the body of the loop is executed, the control is transferred back

to the for statement after evaluating the last statement such as

increment/decrement and the new value of the control variable is

again tested to see whether it satisfies the loop condition or not.

• If the condition is satisfied again, then the body of the loop is

executed again. This process continues till the value of the control

variable fails to satisfy the test condition.

• One of the important points about the for loop is that all the three

actions initialization, test-condition and increment/decrement

are placed within the for statement itself, thus making the user

comfortable but it is not mandatory.

Analyze the for Statement

• The for loop in C has several capabilities that are not found in other

loop constructs. For example more than one variable can be

initialized at a time in the for statement separated by a comma.

Example: for (m=1, n=10; m<=n; m++)

• Like the initialization section the increment section can have

more than one part separated by a comma. For example: for (m=1,

n=10; m<=n; m++, n--)

• The test condition can have compound relation and the testing need

not to be limited only to the loop control variable. Example: for

(m=1, n=10; m<10 && n< 20; m++)

• It is also permissible to use expressions in the assignment

statements of initialization and increment/decrement.

Example: for(i=(m+n)/2; i>1; i=i/2)

Analyze the for Statement

• Another unique and important aspect of for loop is that one or more

sections can be omitted, if necessary. However in such cases the

semicolons separating the sections must remain. Both initialization and

increment/decrement sections can be omitted within the for statement.

The initialization can be done before the for statement and

increment/decrement can be performed within the body of the loop or

even after the body of the loop. Example:

 i=5;

 for(; i<=15;){

printf(“The current value of i=%d”, i);

i=i+1; }

Analyze the for Statement

• Again the test condition can also be omitted. If the test condition

is not present then the for statement behaves like a infinite loop.

Such loop can be broken using break and goto statement.

Example:

for(; ;)

printf(“Hello World”);

• The C compiler does not give an error message if a semicolon is

placed at the end of the for statement but it is considered as a null

statement. Example:

for(i=0;i<=2;i++) ;

The While Statement

• The simplest of all the looping structures is the while

statement. The basic format of the while statement is :

while (test-condition)

{

body of the loop;

}

The While Statement

• The while is an entry controlled loop statement. The test condition

is evaluated and if the condition is true, then the body of the loop is

executed. After execution of the body the test condition is once

again evaluated and if it is true, the body is executed once again.

• This process of repeated execution of the body continues until the

test condition becomes false and the control is transferred out of the

loop. On exit the program continues with the statement

immediately following the body of the loop.

• The important thing to notice that if the test condition is false then

the controlled statements are not executed not even once unlike the

do while loop.

The Do While Statement

• On some occasions it might be necessary to execute the body of the

loop before the test is performed. Such situations can be handled by

using do while loop. It has the structure:

do

{

body of the loop;

}

while(test condition);

Comparison of Loops

Topics For loop While loop Do … While loop

Initialization

of condition

variable

Before or within the

parenthesis of the

loop.

Before the loop.

Before or in the body of

the loop.

Test

Condition

Before the body of

the loop.

Before the body

of the loop.

After the body of the loop.

Updating the

condition

variable

After the first

execution.

After the first

execution.

After the first execution.

Loop Type
Entry controlled

loop

Entry controlled

loop

Exit controlled loop

Loop Variable Counter Counter Sentinel and Counter

Selecting a Loop

• It is the programmer's choice to use which loop depending on the type

of the problem and how he want to solve it. But still there are some

strategy that are used while choosing a loop to solve a problem:

• Analyze the problem and see whether it required a pre-test or post-test

loop. If it requires a post-test loop then we can use only one loop that is

do while loop. If it requires a pre- test loop then we have two choices

for loop and while loop.

• Decide whether the loop termination requires counter based control

or sentinel based control. Use for loop if the counter based control is

necessary. Use while loop if the sentinel based control is required.

Jumping out a Loop

• C permits a jump from one statement to another within a loop as

well as a jump out of a loop. The break and goto statements can

be used to jump out of a loop.

• When a break statement is encountered inside a loop, the loop is

immediately exited and the program continues with the statement

immediately following the loop. When the loops are nested, the

break would only exit from the loop containing it. That is the

break will exit only a single loop.

• While a goto statement can transfer the control to any place in the

program. It is useful to provide branching within a loop. Another

important use of goto is to exit from deeply nested loops when an

error occurs.

