Programming C/C++

Dr. Chayan Halder **Assistant Professor**

Programming

What is Programming?

The communicative technique by which one can instruct a computing device to perform some task.

Why Programming?

Automated solution to the problems that can be solved with the aid of computing devices.

- Less time consuming
- No errors
- Repetitive

Programming

A typical programming task can be divided into two phases:

Problem solving phase

produce an ordered sequence of steps that describe solution of problem

this sequence of steps is called an algorithm

Implementation phase

implement the program in some programming language

Problem Solving

- Problem can be simple or complex
- Solutions of a problem can also be simple or complex.
- Solutions should have finite number of steps

• The steps should be sequential.

Problem Solving Example

- Boiling water
 - Container
 - Water
 - Heat / Fire

Algorithm

- An algorithm is a step by step recipe for solving an instance of a problem.
- Every single procedure that a computer performs is an outcome of some sort of algorithm.
- An algorithm is a precise procedure for solving a problem in finite number of steps.
- An algorithm states the actions to be executed and the order in which these actions are to be executed.

Algorithm

Definition

An algorithm is a well ordered collection of clear and simple instructions of definite and effectively computable operations that when executed produces a result and stops executing at some point in a finite amount of time rather than just going on and on infinitely.

Algorithm Example

• Example 1: Write an algorithm to determine a student's final grade and indicate whether it is passing or failing. The final grade is calculated as the average of four marks.

Algorithm Example

Step1: Input 4 marks of a student

Step2: Calculate their average by summing and dividing by 4

Step3: If the average is below 50 then "FAIL" otherwise "PASS"

Algorithm Example

Algorithm

Step 1: Input M1,M2,M3,M4

Step 2: $GRADE \leftarrow (M1+M2+M3+M4)/4$

Step 3: if (GRADE < 50) then

Print "FAIL"

else

Print "PASS"

Step 4: End

Flowchart

- Flowcharts is a graph used to depict or show a step by step solution using **symbols** which represent a task.
- The symbols used consist of geometrical shapes that are connected by **flow lines**.
- It is an alternative to pseudocoding; whereas a pseudocode description is verbal, a flowchart is graphical in nature.

Flowchart Symbols

Flowchart Symbols (cont'd)

Process symbol - shows an instruction other than input, output or selection.
Input-output symbol - shows an input or an output operation.
Disk storage I/O symbol - indicates input from or output to disk storage.
Printer output symbol - shows hardcopy printer output.

Flowchart Symbols (cont'd)

Selection symbol - shows a selection process for two-way selection.

Off-page connector - provides continuation of a logical path on another page.

On-page connector - provides continuation of logical path at another point in the same page.

Flow lines - indicate the logical sequence of execution steps in the algorithm.

Flowchart – sequence control structure

Flowchart – selection control structure

Flowchart – repetition control structure

Flowchart Example

Step 1: Input M1,M2,M3,M4

Step 2: GRADE \leftarrow (M1+M2+M3+M4)/4

Step 3: if (GRADE <50) then

Print "FAIL"

else

Print "PASS"

end if

 Write an algorithm and draw a flowchart to convert the length in feet to centimeter.

Pseudocode:

- *Input the length in feet (Lft)*
- Calculate the length in cm (Lcm) by multiplying LFT with 30
- Print length in cm (LCM)

Algorithm

- Step 1: Input Lft
- Step 2: Lcm \leftarrow Lft x 30
- Step 3: Print Lcm

Flowchart

Write an algorithm and draw a flowchart that will read the two sides of a rectangle and calculate its area.

Pseudocode

- Input the width (W) and Length (L) of a rectangle
- Calculate the area (A) by multiplying L with W
- Print A

Algorithm

- Step 1: Input W,L
- Step 2: $A \leftarrow L \times W$
- Step 3: Print A

