ORGEL DIAGRAM

DR. KAUSTAB MANDAL

Assistant Professor

Department of Chemistry
Ramakrishna Mission Vivekananda Centenary College Kolkata- 700118 (Mobile: 8777 313491)

Three main steps in finding free ion Terms:

1. Resultant spin quantum number (S): Individual spin angular momenta of the electrons $\left(m_{s}\right)$ combine to give resultant spin angular momentum $\left(\mathrm{M}_{\mathrm{s}}\right)$.
2. Resultant orbital quantum number (L): Individual orbital angular momenta of the electrons $\left(\mathrm{m}_{\mathrm{l}}\right)$ combine to give resultant orbital angular momentum $\left(\mathrm{M}_{\mathrm{L}}\right)$.
3. Resultant spin-orbital quantum number (I): Resultant spin angular momentum $\left(\mathrm{M}_{\mathrm{s}}\right)$ and resultant orbital angular momentum $\left(\mathrm{M}_{\mathrm{L}}\right)$ combine to give a resultant spin-orbital angular momentum $\left(\mathrm{M}_{\mathrm{J}}\right)$.
```
Free ion Term \(={ }^{(2 S+1)} \mathrm{L}\) Free ion Term-Symbol \(={ }^{(2 S+1)} \mathrm{L}_{\mathrm{J}}\)
```

FREE ION TERMS: RUSSELL-SAUNDERS STATES

Free ion Terms of various d^{n} configurations: Microstates of d^{2} configuration

Configuration	No. of microstates	Terms	Degeneracy of ${ }^{3} \mathrm{~F}=21$ Degeneracy of ${ }^{3} \mathrm{P}=9$
$\mathrm{d}^{1}, \mathrm{~d}^{9}$	10	${ }^{2} \mathrm{D}$	Degeneracy of ${ }^{1} \mathrm{G}=9$
$\mathrm{d}^{2}, \mathrm{~d}^{8}$	45	${ }^{3} \mathrm{~F},{ }^{3} \mathrm{P},{ }^{1} \mathrm{G},{ }^{1} \mathrm{D},{ }^{1} \mathrm{~S}$	Degeneracy of ${ }^{1} \mathrm{D}=5$
$\mathrm{d}^{3}, \mathrm{~d}^{7}$	120	${ }^{4} \mathrm{~F},{ }^{4} \mathrm{P},{ }^{2} \mathrm{H},{ }^{2} \mathrm{G},{ }^{2} \mathrm{~F},{ }^{2} \mathrm{D}(2),{ }^{2} \mathrm{P}$	Degeneracy of ${ }^{1} \mathrm{~S}=1$
$\mathrm{d}^{4}, \mathrm{~d}^{6}$	210	$\begin{aligned} & { }^{5} \mathrm{D},{ }^{3} \mathrm{H},{ }^{3} \mathrm{G},{ }^{3} \mathrm{~F}(2),{ }^{3} \mathrm{D},{ }^{3} \mathrm{P}(2),{ }^{1} \mathrm{I}, \\ & { }^{1} \mathrm{G}(2),{ }^{\mathrm{T}},{ }^{1} \mathrm{D}(2),{ }^{1} \mathrm{~S}(2) \end{aligned}$	Total degeneracy $=45$
d^{5}	252	$\begin{aligned} & { }^{6} \mathrm{~S},{ }^{4} \mathrm{G},{ }^{4} \mathrm{~F},{ }^{4} \mathrm{D},{ }^{4} \mathrm{P},{ }^{2} \mathrm{I},{ }^{2} \mathrm{H},{ }^{2} \mathrm{G}(2), \\ & { }^{2} \mathrm{~F}(2),{ }^{2} \mathrm{D}(3),{ }^{2} \mathrm{P},{ }^{2} \mathrm{l} \end{aligned}$	

Number of microstates $={ }^{n} C_{r}$
Degeneracy of Term $=(2 S+1)(2 L+1)$
$(2 S+1)=$ Spin multiplicity
$(2 L+1)=$ Orbital multiplicity
Degeneracy of ${ }^{2}$ D Term $=2 \times 5=10$

FREE ION TERMS: RUSSELL-SAUNDERS STATES

Ions of first transition series have a C/B ratio of about 4, with B lying around $1000 \mathrm{~cm}^{-1}$. The values of B and C in complexes are much lower than the free ion values.

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

State	Labels
S	A_{1}
P	T_{1}
D	$\mathrm{E}+\mathrm{T}_{2}$
F	$\mathrm{~A}_{2}+\mathrm{T}_{1}+\mathrm{T}_{2}$

TERMS ARISING IN LIGAND FIELD

State	Labels
S	A_{1}
P	T_{1}
D	$\mathrm{E}+\mathrm{T}_{2}$
F	$\mathrm{~A}_{2}+\mathrm{T}_{1}+\mathrm{T}_{2}$

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

State	Labels
S	A_{1}
P	T_{1}
D	$\mathrm{E}+\mathrm{T}_{2}$
F	$\mathrm{~A}_{2}+\mathrm{T}_{1}+\mathrm{T}_{2}$

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

State	Labels
S	A_{1}
P	T_{1}
D	$\mathrm{E}+\mathrm{T}_{2}$
F	$\mathrm{~A}_{2}+\mathrm{T}_{1}+\mathrm{T}_{2}$

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

d^{n}	Free ion	d^{9} Octahedral weak field				
	terms					
$\mathrm{d}^{1}, \mathrm{~d}^{9}$	${ }^{2} \mathrm{D}$	只吅	Ground state Degeneracy $=2$ Label =E	Degeneracy		
$\mathrm{d}^{2}, \mathrm{~d}^{8}$	${ }^{3} \mathrm{~F},{ }^{3} \mathrm{P},{ }^{1} \mathrm{G} .$.			Label = T		
$\mathrm{d}^{3}, \mathrm{~d}^{7}$	${ }^{4} \mathrm{~F},{ }^{4} \mathrm{P},{ }^{2} \mathrm{H} . .$.					
$\mathrm{d}^{4}, \mathrm{~d}^{6}$	${ }^{5} \mathrm{D},{ }^{3} \mathrm{H},{ }^{3} \mathrm{G} \ldots$	Ground	Free ion groun $\mathrm{D}=\mathrm{E}+\mathrm{T}_{2}$	term $={ }^{2} \mathrm{D}$	Excited	
d^{5}	${ }^{6} \mathrm{~S},{ }^{4} \mathrm{G},{ }^{4} \mathrm{~F} \ldots$	state	Total degenera	$=2+3=5$	state	

State	Labels
S	A_{1}
P	T_{1}
D	$\mathrm{E}+\mathrm{T}_{2}$
F	$\mathrm{~A}_{2}+\mathrm{T}_{1}+\mathrm{T}_{2}$

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

Octahedral crystal field

TERMS ARISING IN LIGAND FIELD

Tetrahedral crystal field

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

Octahedral crystal field

TERMS ARISING IN LIGAND FIELD

Tetrahedral crystal field

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIG AND FIELD

Tetrahedral crystal field

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

Tetrahedral crystal field

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

TERMS ARISING IN LIGAND FIELD

Some features:

$>$ Octahedral d^{n} and tetrahedral $\quad \mathrm{d}^{10-\mathrm{n}}$ give rise to similar type of splitting. $>$ Octahedral d^{n} has inverse splitting of octahedral d ${ }^{10-\mathrm{n}}$.

ORGEL DIAGRAM

Some features:

$>$ In case of $\mathrm{d}^{1}, \mathrm{~d}^{4}, \mathrm{~d}^{6}$ and d^{9}, there exists only one state above the ground state. So we expect only one transition.
$>\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ shows a broad band with a peak around $20100 \mathrm{~cm}^{-1}\left(\mathrm{~T}_{2 \mathrm{~g}} \rightarrow \mathrm{E}_{\mathrm{g}}\right.$ transition $)$. Broad band is due to pronounced JT effect in the excited state.
$>$ Octahedral $\mathrm{Cu}(\mathrm{II})$ complexes may be expected to produce a single absorption $\left(\mathrm{T}_{2 \mathrm{~g}} \rightarrow \mathrm{E}_{\mathrm{g}}\right.$ transition). Here JT distortion is greater. Because of this, $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ has broad band with long tail near infrared.

Orgel diagram for $\mathrm{d}^{1}, \mathrm{~d}^{4}, \mathrm{~d}^{6}$ and d^{9} systems.

Orgel diagram for $\mathrm{d}^{1}, \mathrm{~d}^{4}, \mathrm{~d}^{6}$ and d^{9} systems.

Some features:

$>$ In case of $\mathrm{d}^{2}, \mathrm{~d}^{3}, \mathrm{~d}^{7}$ and d^{8}, there exists three states above the ground state. So we expect three transitions.

Orgel diagram for $\mathrm{d}^{2}, \mathrm{~d}^{3}, \mathrm{~d}^{7}$ and d^{8} systems.

ORGEL DIAGRAM

Some features:

$>$ In case of $\mathrm{d}^{2}, \mathrm{~d}^{3}, \mathrm{~d}^{7}$ and d^{8}, there exists three states above the ground state. So we expect three transitions.
d^{3} in O^{h} field
Possible transitions
(i) ${ }^{4} \mathrm{~A}_{2 g} \rightarrow{ }^{4} \mathrm{~T}_{2 g}$
(ii) ${ }^{4} \mathrm{~A}_{2 g} \rightarrow{ }^{4} \mathrm{~T}_{1 g}$ (F)
(iii) ${ }^{4} \mathrm{~A}_{2 g} \rightarrow{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}$ (P)

Some features:

$>$ In case of $\mathrm{d}^{2}, \mathrm{~d}^{3}, \mathrm{~d}^{7}$ and d^{8}, there exists three states above the ground state. So we expect three transitions.

d^{3} in O^{h} field

Possible transitions

(i) ${ }^{4} \mathrm{~A}_{2 g} \rightarrow{ }^{4} \mathrm{~T}_{2 g}$
(ii) ${ }^{4} \mathrm{~A}_{2 g} \rightarrow{ }^{4} \mathrm{~T}_{1 g}(\mathrm{~F})$
(iii) ${ }^{4} \mathrm{~A}_{2 g} \rightarrow{ }^{4} \mathrm{~T}_{1 \mathrm{~g}}(\mathrm{P})$

Ruby Laser

Ruby contains Cr^{3+} ions embedded in $\mathrm{a}-\mathrm{Al}_{2} \mathrm{O}_{3}$ where oxide ions provide a nearly distorted octahedral field. It produce pulses of coherent visible light (deep red color) at 694.3 nm .
> When a large single crystal of ruby is exposed to light of appropriate frequency to excite Cr^{3+} to the ${ }^{4} \mathrm{~T}_{2 \mathrm{~g}}(\mathrm{~F})$ state, it does not return to the ground state. Instead, energy is lost to crystal lattice by vibrational modes.

