

FREE ION TERMS: RUSSELL-S&UNDERS ST&TES

Three main steps in finding free ion Terms:

<u>**1. Resultant spin quantum number (S):**</u> Individual spin angular momenta of the electrons (m_s) combine to give resultant spin angular momentum (M_s) .

- <u>**2. Resultant orbital quantum number (L):**</u> Individual orbital angular momenta of the electrons (m_l) combine to give resultant orbital angular momentum (M_L) .
- <u>**3. Resultant spin-orbital quantum number (J):</u>** Resultant spin angular momentum (M_s) and resultant orbital angular momentum (M_L) combine to give a resultant spin-orbital angular momentum (M_J).</u>

Free ion Term = (2S+1)LFree ion Term-Symbol = $(2S+1)L_{T}$

FREE ION TERMS: RUSSELL-SAUNDERS STATES

Free ion Terms of various dⁿ configurations: Microstates of d² configuration

Configuration	No. of	Terms	Degeneracy of ${}^{3}F = 21$
	microstates		Degeneracy of $^{3}P = 9$
d ¹ , d ⁹	10	² D	Degeneracy of ${}^{1}G = 9$
d², d ⁸	45	³ F, ³ P, ¹ G, ¹ D, ¹ S	Degeneracy of $^{1}D = 5$
d ³ , d ⁷	120	⁴ F, ⁴ P, ² H, ² G, ² F, ² D(2), ² P	Degeneracy of ${}^{1}S = 1$
d ⁴ , d ⁶	210	⁵ D, ³ H, ³ G, ³ F(2), ³ D, ³ P(2), ¹ I,	
		${}^{1}G(2), {}^{1}F, {}^{1}D(2), {}^{1}S(2)$	Total degeneracy = 45
d ⁵	252	⁶ S, ⁴ G, ⁴ F, ⁴ D, ⁴ P, ² I, ² H, ² G(2), ² F(2), ² D(3), ² P, ² S	

Number of microstates = ⁿC_r Degeneracy of Term = (2S+1)(2L+1) (2S+1)= Spin multiplicity (2L+1) = Orbital multiplicity

Degeneracy of ²D Term = $2 \times 5 = 10$

FREE ION TERMS: RUSSELL-SAUNDERS STATES

FREE ION TERMS: RUSSELL-SAUNDERS STATES

Racah Parameters

- The energy separation between various 'terms' are determined by inter-electron repulsions. The interelectron repulsions are conveniently described in terms of parameters called Racah parameters.
- The energy of each 'term' originating from a given electron configuration may be expressed as linear combination of three Racah parameters A, B and C.

Energy of different terms

 ${}^{1}S = A + 14B + 7C$ ${}^{1}D = A - 3B + 2C$ ${}^{1}G = A + 4B + 2C$ ${}^{3}P = A + 7B$ ${}^{3}F = A - 8B$

The differences are given by B and C only.

Ions of first transition series have a C/B ratio of about 4, with B lying around 1000 cm⁻¹. The values of B and C in complexes are much lower than the free ion values.

FREE ION TERMS

or antisymmetric respectively either with respect to a 2 fold rotational axis perpendicular to the principal axis or to a plane of symmetry including principal axis.

State	Labels
S	A ₁
Р	T ₁
D	E +T ₂
F	$A_2 + T_1 + T_2$

Total degeneracy = 2+3 = 5

state

Tetrahedral crystal field

state

Total degeneracy = 2+3 = 5

 $D = E + T_{2}$

Ground

state

Excited

state

Tetrahedral crystal field

 $A_2 + T_1 + T_2$

F

TERMS & RISING IN LIG & ND FIELD

Octahedral crystal field

TERMS & RISING IN LIG & ND FIELD

Octahedral crystal field

Some features:

- ➢In case of d¹, d⁴, d⁶ and d⁹, there exists only one state above the ground state. So we expect only one transition.
- ▷ $[Ti(H_2O)_6]^{3+}$ shows a broad band with a peak around 20100 cm⁻¹ (T_{2g} → E_g transition). Broad band is due to pronounced JT effect in the excited state.
- ≻Octahedral Cu(II) complexes may be expected to produce a single absorption $(T_{2g}\rightarrow E_g \text{ transition})$. Here JT distortion is greater. Because of this, $[Cu(H_2O)_6]^{2+}$ has broad band with long tail near infrared.

Jorgensen's rule of average environment: The position of the peak in a complex [TiX₃L₃] will be midway between that for $[TiL_6]^{3+}$ and $[TiX_6]^{3-}$ provided all three complexes have the same symmetry. **Problem.** Calculate the Δ_{0} for $[Ti(CH_3COCH_3)_6]^{3+}$ from the following absorption peaks. $[TiCl_3(CH_3COCH_3)_3]$ at 15400 cm⁻¹ and [TiCl₆]³⁻ at 12750 cm⁻¹. (Ans. 18000 cm⁻¹.)

Some features:

➢In case of d², d³, d⁷ and d⁸, there exists three states above the ground state. So we expect three transitions.

Some features:

➢In case of d², d³, d⁷ and d⁸, there exists three states above the ground state. So we expect three transitions.

<u>Ruby Laser</u>

- Ruby contains Cr³⁺ ions embedded in α-Al₂O₃ where oxide ions provide a nearly distorted octahedral field. It produce pulses of coherent visible light (deep red color) at 694.3 nm.
- When a large single crystal of ruby is exposed to light of appropriate frequency to excite Cr³⁺ to the ⁴T_{2g}(F) state, it does not return to the ground state. Instead, energy is lost to crystal lattice by vibrational modes.