Wavefront propagation 11 **Uniaxial crystal**

Palash Nath

Department of Physics RKM Vivekananda Centenary College Rahara, Kolkata – 700118

Email : palashnath20@gmail.com

Consider a point source emanating unpolarized light in a uniaxial crystal

It is the choice of coordinate axes

- Optic axis is along Z-direction
- Along optic axis : ϵ_{\parallel}
- Any perpendicular direction to optic axis : ϵ_{\perp}

Light polarized perpendicular to optic axis propagates along Zdirection with speed : $v_o = \frac{1}{\sqrt{\mu_0 \varepsilon_\perp}}$

$\xrightarrow{\mathcal{V}_{0}} \mathcal{Z} \quad Optic \quad axis$

Consider ray propagating along • an arbitrary direction making angle θ_r with optic axis and speed $v_r(\theta_r)$

$\rightarrow v_0$ Z Optic axis

- Consider ray propagating along • an arbitrary direction making angle θ_r with optic axis and speed $v_r(\theta_r)$
- It is polarized in the plane of • propagation direction and optic axis.

$\xrightarrow{\mathcal{V}_0} \mathbf{z} \quad Optic \quad axis$

- Consider ray propagating along an arbitrary direction making angle θ_r with optic axis and speed $v_r(\theta_r)$
- It is polarized in the plane of propagation direction and optic axis.

Since the polarization (*E*) have both x and z component, it experiences both ϵ_{\parallel} (z-axis) and ϵ_1 (x-axis). The ray velocity depends on propagation direction

Z. Optič axis

Wave propagation

Light polarized perpendicular to optic axis propagates along Zdirection with speed : $v_o = \frac{1}{\sqrt{\mu_0 \varepsilon_\perp}}$

Light polarized perpendicular to the plane formed by optic axis and ray direction always experiences ϵ_{\perp} . Its velocity is independent of propagation direction. This is o-ray. Spherical

along optic axis. other on optic axis

$\xrightarrow{\boldsymbol{v}_0} \boldsymbol{z} \quad Optic \quad axis$

direction. This is e-ray

- o-ray and e-ray have identical speed
- So, both wavefront touches each

Light polarized in the plane formed by optic axis and ray direction experiences ϵ_{\perp} and ϵ_{\parallel} both. Their influences are different along different direction. Velocity depends on propagation

Three dimensional representation of e-ray wavefront.

- It is an ellipsoid of revolution about optic axis. •
- Electric field vector lies on the shaded plane formed by ray direction and optic axis.

Red : o-ray wavefront Blue : e-ray wavefront

Normal incidence and optic axis inclined with interface

Red : o-ray wavefront Blue : e-ray wavefront

Oblique incidence and optic axis (a) parallel and (b) perpendicular to interface

Oblique incidence and optic axis inclined with interface

Red : o-ray wavefront Blue : e-ray wavefront