Wavefront propagation in

 Uniaxial crystal

 Uniaxial crystal}

Palash Nath

Department of Physics
RKM Vivekananda Centenary College Rahara, Kolkata - 700118

Email : palashnath20@gmail.com

Consider a point source emanating unpolarized light in a uniaxial crystal

It is the choice of coordinate axes

- Optic axis is along Z-direction
- Along optic axis : $\epsilon_{\|}$
- Any perpendicular direction to optic axis : ϵ_{\perp}

7. Optic axis $\epsilon_{\|}$

Light polarized parallel to optic axis propagates along X-direction with
speed : $v_{e}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{\|}}}$

Light polarized parallel to optic axis propagates along X-direction with speed : $v_{e}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{\|}}}$

Light polarized perpendicular to optic axis propagates along Z direction with speed : $v_{o}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{\perp}}}$

- Consider ray propagating along an arbitrary direction making angle $\boldsymbol{\theta}_{r}$ with optic axis and speed $\boldsymbol{v}_{r}\left(\boldsymbol{\theta}_{r}\right)$

- Consider ray propagating along an arbitrary direction making angle $\boldsymbol{\theta}_{r}$ with optic axis and speed $v_{r}\left(\boldsymbol{\theta}_{r}\right)$
- It is polarized in the plane of propagation direction and optic axis.

- Consider ray propagating along an arbitrary direction making angle $\boldsymbol{\theta}_{r}$ with optic axis and speed $\boldsymbol{v}_{r}\left(\boldsymbol{\theta}_{r}\right)$
- It is polarized in the plane of propagation direction and optic axis.
- Since the polarization (\boldsymbol{E}) have both x and z component, it experiences both $\epsilon_{\|}(z$-axis) and $\epsilon_{\perp}(x$-axis). The ray velocity depends on propagation direction

Ray velocity surface (wavefront) is ellipsoid of revolution about optic axis.

$$
\frac{1}{v_{r}^{2}\left(\theta_{r}\right)}=\frac{\cos ^{2} \theta_{r}}{v_{o}^{2}}+\frac{\sin ^{2} \theta_{r}}{v_{e}^{2}}
$$

$$
O N=O P \cos \left(\theta_{k}-\theta_{r}\right) \quad v_{r}\left(\theta_{r}\right) \cos \left(\theta_{k}-\theta_{r}\right) \quad v_{\boldsymbol{e}}
$$

Three dimensional representation of e-ray wavefront.

- It is an ellipsoid of revolution about optic axis.
- Electric field vector lies on the shaded plane formed by ray direction and optic axis.

Red : o-ray wavefront
Blue: e-ray wavefront

Red : o-ray wavefront
Blue : e-ray wavefront

Normal incidence and optic axis inclined with interface

Oblique incidence and optic axis (a) parallel and (b) perpendicular to interface

Red : o-ray wavefront Blue: e-ray wavefront

Oblique incidence and optic axis inclined with interface

