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1 Introduction

» Light is electromagnetic (EM) wave which is transverse in nature. Electric field E(r,t) and

magnetic field B(r,t) in EM wave oscillate in mutually perpendicular directions; furthermore,
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Figure 1: A plane progressive EM wave. Tv is the direction of electric field vector and k is the

propagation direction of EM wave.

the wave propagation direction (i.e, the direction of the wave vector k) is also perpendicular to

E and B fields. The fields in a plane progressive EM wave can be represented by,

E(r,t) = Eyexpli(k - r — wt)]
= nFEyexpli(k - r — wt)]
and
B(r,t) = Byexpli(k - r — wt)]

Here, the wave propagation velocity is given by,

w w
Vw -

The spatial variation of EM fields in a plane progressive EM wave is depicted in figure - 1; in
which it is clear the 2, B and k are mutually perpendicular to each other.

In EM wave, E and B fields are interrelated to each other by the relation,
1
c

B(r.t) = - [k x E(r,t)]

The strength of magnetic field is ¢ times smaller than the electric field strength. As the speed of
light ¢ is very large number, the magnetic field strength is quite small compared to electric field

strength.

» The direction of polarization of EM wave or light is considered as the direction of
electric field vector. Any source of light contains very large number of atomic sources. Due to
electron transition from higher energy levels to lower energy levels in the atoms, EM wave packets
are emitted from these atoms. The emission process is random and there is no correlation among
the atoms. Therefore, the wave pulses coming from individual atoms have no correlation and as
a result the emitted EM waves may have random polarization directions with respect to each

other. That means, overall light emitted form normal source is unpolarized wave, in which
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polarization direction randomly distributed. However, for each wave packet emitted form atomic
emitter must obey the the condition : E 1 B 1 k. If in EM wave the polarization direction
does not show any random orientation then the wave is said to be polarized wave, later we can

see that polarized wave can be classified in few types.

» While EM wave propagates through any material medium, it’s electric field interacts with
the atoms, molecules of the material; more specifically interacts with the charge distribution
of the material. The electric field of EM wave induces macroscopic dipole moment inside the
material. For linear material, the induced dipole moment is linearly proportional to the strength
of electric field. In linear medium, the induced dipole moment per unit volume related to the
electric field as,
P(r,t) = egxe(w)E(r,t)

where, the susceptibility y.(w) is in general function of frequency w. The frequency dependent

permittivity €(w) can be represented by,

€(w) = (1 + xe(w))

From the basic theory of electrodynamics, in particular from the Maxwell’s equations, it can be
shown that the speed of EM wave in material is,
1 c

1
Vioe@)  Vieo+ xW)  V/1I+ x(w)

Hence the refractive index becomes,

n(w) = = = VI+x(@)

Xe physically represents the response of the material on application of electric field. It depends

v =

on the charge distribution in the material and depending on the charge distribution, y. can
exhibit anisotropic variation. That means, in different directions in the material its values are
different. The system (generally crystalline material) in which such anisotropy is observed is
called as anisotropic material. For example calcite crystal is an anisotropic crystal. As the
speed of light depends on Y., in anisotropic material speed of light is different along different

directions.

2 Anisotropic material

In this medium, the electronic properties, in particular, the permittivity or the susceptibility
exhibits anisotropic variations. Uniaxial crystal is a kind of anisotropic medium. In these kind
of crystals, the permittivity e is different along a particular direction (fixed to the crystal) and
any perpendicular direction to this reference direction, € remain same. The direction along which
e is different is called optic axis of the crystal. Later we will see that optic axis can be defined
in an alternative way in terms of speed of light of two different polarization components. Since,

the system has only one such direction, it is called uniaxial crystal. There exist biaxial crystal
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also; for which we can identify two optic axis. Mathematical theory of biaxial crystal is quite
complicated. Following we consider the propagation of EM wave through uniaxial crystal to

understand how polarization of light explicitly related to the anisotropy of crystal.

2.1 Propagation of light in uniaxial crystal

x\ x\
() 5

s GBR SR
y ((6.1) (optic axis) 7 Sy (Si) (optic axis) 7 ,

(a) (b)

Figure 2: (In both) Let set the z—axis parallel to optic axis. ¢ is the permittivity along optic
axis and the same perpendicular to optic axis is €¢;. Wave is propagating with wave vector k
making an angle 6, with optic axis. (a) D field is decomposed in two components : y-component
and z — z component. (b) x — z component of D field is considered with H field normal to both
D and k.

For simplicity we consider our Cartesian z-axis to coincide with the optic axis of the crystal.

The anisotropy of pemittivity is given by,
€z = € = €L # €, = ¢

where, we consider € to be the permittivity along the optic axis and €, to be the permittivity
along any perpendicular direction of optic axis. According to our coordinate system, the system
is isotropic on any x — y plane.

Furthermore, we assume that the system is non-magnetic, therefore, it’s permeability is taken
to be py. The Maxwell’s equations in the material (no free charge and free current) can be

expressed as,

i) V-D(r,t)=0

ii) V:.B(r,t)=0

iii) V x E(r,t)= —%B(r,t)
: 0

iv) Vx H(rt)= aD(r,t)

From these Maxwell’s equations one can derive the wave equation for EM fields. The space-
time variation of fields in a plane progressive EM wave can be represented by (1); and similar

expression can be wrote down for D and H.
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In case of isotropic crystal € is independent of direction in the crystal. In such cases,
D(r,t) = eE(r,t)

that means D and E are parallel to each other. However, for anisotropic medium, let the unaxial
crystal depicted in figure - 2,

D,=e¢E, =€ FE, ; Dy=¢k, = E, ; D.=¢ck, =¢lk.

In more compact form,

DI € 0 0 Ex
Dy = 0 € 0 Ey
D, 0 0 ¢ E,

That means, in anisotropic crystal, D and FE fields are not parallel to each other.

Exercise 1. Show that in anisotropic crystal, D field is perpendicular to the wave vector k.
Solution :
For plane progressive wave,

D(r,t) = Dyexpli(k - r — wt)]

where;
k =&k, + gk, + 2k, and r=2Tr+gy+ 2z

Consider the Maxwell’s equation,
V-D=0

Now consider the operation,

9 expli(k «r —wt)] = 9 expli(zky + yk, + zk, — wt)]

Ox Ox
= ik, expli(k - r — wt)]
Similarly,
g expli(k « 7 — wt)] = ik, expli(k « 7 — wt)]
)
and 5
5 expli(k - r — wt)] = ik, expli(k - r — wt)]
2
Now,
V.-D=0
.0 0 0 . . . :
= |&—+Y=—+ 2| (Do +9Doy, + 2Dy.) expli(k - r —wt)] =0
ox oy 0z ) ~ ~— ’ ()
Dy
= i(kyDoy + kyDoy + k. Do) expli(k - 7 —wt)] =0
= tk-D=0

That means D field is perpendicular to wave vector k.

5
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According to the figure - 2(a), we can consider two components of polarization for an EM wave

propagating along k.

i) Polarization normal to the plane formed by k and optic axis (hence x — z plane), we call
this polarization component as out-of-plane polarization or the y-polarization (according

to our choice of coordinate system).

ii) Another component of polarization is considered to be lying in the plane of k and optic

axis (hence x — z plane). We call this polarization component as in-plane polarization.

e To be noted that, for out-of-plane polarized wave, D is always pointing along perpendicular
direction of the optic axis irrespective of propagation direction k. So, this particular polarization
component always experiences €| irrespective of its propagation direction k. Therefore, the speed
of propagation of this wave is independent of its propagation direction. We call this light wave
as ordinary wave because it behaves like ordinary light wave propagation through isotropic
medium. Let,

vp = ordinary wave velocity

Then,

1
v/ HO€EL

Vo =

e In case of in-plane polarization component, D experiences both €, and ¢ (unless the prop-
agation direction is either along x-axis or z-axis). Depending on the direction of propagation
(angle 6y,), effect of €, and € can vary which in effect gives rise to variation speed of EM wave
along different propagation direction ;. Which is unusual in general cases, so, we call this light
wave as extra ordinary wave. The in-plane polarization component would exhibit some inter-
esting phenomena as it experiences the anisotropy of permittivity e. Let’s focus on the in-plane

polarization.

2.1.1 Extraordinary wave velocity

e Consider in figure - 2(b) the in-plane polarized light is traveling along x—axis (i.e, 8 = 7/2).
Then, its polarization is along z—axis, that means the polarization experiences €. Hence the

light propagation velocity,
1

VHof]|

Ve =

where,
v, = extra ordinay wave velocity
e If the in-plane polarized light propagates along optic axis (i.e, 6 = 0), then it is polarized
along r—axis and experiences ¢, . The wave propagation speed will be,
1
N

=wvy 3 idetified as ordinary wave velocity
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e Extra ordinary light wave is polarized in the plane formed by k and optic axis.
Ordinary light wave is polarized in the normal direction of the plane formed by k
and optic axis

e Extra ordinary light and ordinary light both travel with same speed of v, along

the optic axis.

e According to our diagram - 2(b), for in-plane polarized wave, D = (D,,D,) and E =

(E., E,). Their relation,
D, 0 E,
=% 3)
D, 0 ¢ FE,

E(r,t) = Eyexpli(k - r — wt)] and B(r,t) = Byexpli(k - r — wt)]

For plane progressive EM wave,

D(r,t) = Dyexpli(k - r — wt)] and H(r,t) = Hyexpli(k - r — wt)]
Now, consider the Maxwell’s equation

0B
E—-_"—
V x ey

Now from exercise - 2;

= i(k x E) =1iwB =iwugH ;non-magnetic material

1
= H=—(kxE)
WHo

Consider the another Maxwell’s equation,

oD
VXH_E

= i(k x H) = —iwD

1
= D=--(kxH)
W

= D:—lkzx<ikxE)

w Wito
H
= D=-— kx(kxFE
il (kx B)
1
= D= KFE —k(k-E
SRE - k(k- B)
For in-plane polarized wave, k = (k,, k,). The components are; k, = |k|sinf; = ksin6; and
k., = |k|cos by = k cos 0} (according to figure - 2(b)).
We have obtained above,
1
D = K*E —k(k-E
S k(e B)
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Now, the x—component of in-plane polarized wave,

1
D, = K*E, — ky(k B, + k. E,
ol (ke oy + k- )
k? . 9 .
= e F,= —Q(Ew — E,sin” 0, — E, sin 6, cos 6y,
S~~~ oW

Now : vg = 1/\/po€L

Wave velocity along k : v, (0) = w/k
= (v2(0k) — vg cos” O) By + (vg cos Oy sinb)E, =0 (4)

Similarly for z-component of in-plane polarized light,

1
D, = E’E, — k,(k,E, + k.E,
B~ ku(kEx + h.E)
]{32
= k.= —Q[Ez — B, cos? 0 — E, cos 0, sin 0]
N~ Mo
D,

Now : v, = 1//10€]|
= (v2(0) — v2sin®0)E, + (v cos O sinby) E, = 0 (5)

For non-trivial values of E, and E, the determinate of the coefficients of £, and FE. of

equations (4) and (5) must vanish.

Therefore,
vZ —vicos’0 w3 cos By sin by
=0
v2cosfysinfy, 02 —v?sin® Oy
From here it is easy to find out the relation;
v2 (0y) = vg cos® Oy, + v2sin® O, (6)

where,

vw(0x) = Extra ordinary wave velocity in the direction 6, with respect to optic axis (figure - 2)
vg = 1/y/moeL = Ordinary wave velocity along optic axis

ve =1/ VHo€|| = Extra ordinary wave velocity perpendicular to optic axis.

Exercise 2. For E(r,t) = Eyexpli(k - r — wt)], show that V x E =i(k x E)
Hints :
Find the partial derivative like,

% expli(k - r — wt)]

for each x,y, z components (see exercise - 1).
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2.2 Extraordinary wave and extra ordinary ray

Consider the figure - 2(b) in which it is represented that extra ordinary light wave! is propagating

with wave vector k making an angle 6, with the optic axis. For this wave, H field is pointing

x)\ Q
)| H 2 S

0 H
yé <o (€1

(optic axis) Z

Figure 3: Figure for extraordinary light : Wave propagation direction 0, ( direction of wave
vector k) and ray propagation direction 0, (direction of S) are not same in anisotropic medium.
E is not parallel to D. Here, D 1 H 1 kand E 1L H 1 S.

out of the x — z plane (i.e, plane formed by k and optic axis). Hence, three vectors are mutually
perpendicular to each other : D 1 k | H.

If,
k = unit vector along wave propagation direction
d = unit vector along D

h = unit vector along H
Then, from the geometry,
k=dxh
Light ray propagation direction is the direction along which EM wave energy flows,

i.e, the direction of Poynting vector which is defined as,
S=FExH

or  &§=éxh
where, the later expressions are of the respective unit vectors.
In anisotropic crystal, it is already noted that D is not parallel to E. So, in anisotropic crystal
wave propagation direction k (= d x iz) and ray propagation direction § (= é x iz) are
not same.

The wave propagation and ray propagation associated with extraordinary light in a uniaxial

crystal is schematically depicted in figure - 3

2.2.1 Extarordinary wave and extarordinary ray propagation direction

Following we identify that ray propagation direction and wave propagation direction are related

to each other.

I Already mentioned that extra ordinary light is polarized in the plane of k and optic axis
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The ray velocity (v,) and wave velocity (v, ) are defined as,

S w
v = ‘u—‘ and Vy = w
where,
Poynting vector: S =FE x H
Energy density : u = %(D -E+B-H)
Now,

H = Hjexpli(k - r — wt)] and D = Dgexpli(k - r — wt)]
E = Eyexpli(k - r — wt)] and B = Byexpli(k - 7 — wt)]
Putting these expressions in the following Maxwell’s equations,

VXH:a—D and VXE:—a—B
ot ot

We can obtain (with the help of exercise - 2),

1
D=

“(Hxk) and B= é(k: x E)

Now put the expressions of D and B in the energy density expression,

u=3(D-E+B-H)
—%[E-(ka:)qLH-(kxE)]

:lk-(ExH)

.8

w
1
u= a]szS\ cos(Ox — 0,.)

ERS

Ray velocity along 6,.,

v.(0,) = 151 _ d ; using the above expression of u

u  |k|cos( —6,)

But, wave velocity, v, (0x) = w/|k]|

So, we have,

0, (6,) = Vu (Oh)

= m or U (0k) = v,(0,) cos(b, — 0,.) (7)

Now according to figure - 3,
E, = Ecos0, and E. = —Fsinb,

D, = Dcosb, and D, = —Dsin0,

10
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Also, for anisotropic medium with optic axis parallel to z—axis,

E, E,
Dx = GJ_EZ = 5 and Dz = 6||EZ = )
HoVq HoVe
Since, as stated earlier,
1 1
v, = and Ve =

v Ho€L v/ Ho€j|

So, we have,

D, V2 E,
D, v E,
02
= tanf, = —;tané’r
v
e

Therefore,with respect to optic axis, the relation between wave propagation direction

0. and ray propagation direction 6,.,

2 _ 2
vZ tan 0, = v tan 6,

» Note :

(8)

e Suppose, 0, = 0, i.e; ray is propagating along optic axis. Hence, obviously 6, = 0 (from

relation (8)). That means, along optic axis, wave vector k and light ray coincide.

e Similarly, if 6, = 7/2 i.e; ray is propagating perpendicular to optic axis. Hence also from

relation (8), 0y = m/2. That means, perpendicular to optic axis, wave vector k and

light ray coincide.

2.2.2 Extraordinary ray velocity

In this section we will develop the relation of extraordinary ray velocity with its propa-

gation direction 6,..
Consider the relation (7),

Vw(0r) = v,(0,) cos(O, — 6,.) ; Refer to figure - 3

Or,
1 cos?(0x —0,)
v 2
_ (cos 0, cos 0, + sin O sin 6, )

v3 cos? O + v2 sin® O,
cos®0,(1 + tan 6, tan 6;)?

v2 (1 + Z—% tan? 0k>

2
cos? 0, <1 + Z—‘E tan? 0r>

; Using relation (6) for expression of v,

= ; Usign expression for tan ), form (8)

v2 <1 + Z—‘E tan? 9,)

29 2
_ SO8 Ur (1 + Y tan? 9,,>

2 2
Vo Ve

cos?f, sin#,
_|_

2 2
Vo Ve

11
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Therefore, with respect to optic axis along the direction of 0, angle, the extraordinary

ray velocity v,(6,) is given by,

1 cos?f, sin%é,
— 9
20y - @ @ ¥

» Extraordinary wave :

The wave propagation velocity at 6, angle w.r.t optic axis,
v2 (0y) = v2cos? O, + v2sin® O,

Associated refractive index for extraordinary wave,

1 cos®Oy N sin? 0y,
n2(0)  n2 n?
where
’ (00) c c c
n = Ny = — Ne = —
w\Yk 'Uw(ek;) 9 o v, 9 e e

» Extraordinary ray :

The ray propagation velocity at 6, angle w.r.t optic axis,

1 cos?f, sin?é,
2 - 2 2
v'r (97’) Uo Ue

Associated refractive index for extraordinary ray,

2 2 2 2 .2
n:(0,) = n: cos” 0, + nZ sin” 0,

where,

2.2.3 Shape of the extraordinary wave front
Emanating from a point source, in time interval ¢, the extraordinary ray traverses.

tv,.(0,) distance along 6, w.r.t optic axis = p (say).
tv, distance along optic axis = a (say)

tv, distance perpendicular optic axis = b (say)

For extraordinary ray,
1 cos*0, N sin? 0,

v () ve

Or,
1 cos?f, sin%é6,
a? + b2

This represents parametric form of ellipse.

Suppose optic axis is along Cartesian z—axis, then we can consider the transformation,

2z = pcosb, and x = psinb,

12
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Hence, we have the standard form of ellipse in x — 2z plane,

22 22

2t =]
The extraordinary wave front is elliptical in shape in the plane of wave vector k and
optic axis. Any one of axes (either major or minor) of the ellipse coincides with the

optic axis of the uniaxial crystal.

Optic axis y\6 <

Figure 4:

» The wave front is depicted in figure - 4. In this figure :

e The ellipse represents the extraordinary wave front. Which is basically the trajectory of

the tip of light ray at any arbitrary instant of time ¢.

e Wave vector k is normal to the tangent drawn (dotted line) on the ellipse at the intersection
point by ray. Obviously, ray and wave vector are directed in same direction only along optic

axis and perpendicular to optic axis.
e OP = tv,.(0,), ON = tv,(0r), a = tv, and b = tv,.

e From the diagram,

ON = OP cos(by — 0,)
Or,

Uy = Uy cos(O — 6,.)
2.2.4 Positive crystal and negative crystal

Ordinary ray travels with velocity v, in every directions, but the extraordinary ray travels with

velocity v, along optic axis and with velocity v, along perpendicular too optic axis. In some

13
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crystals, v, > v, or (n, < n.), these crystals are called positive crystal. On the other hand in
some crystals, v, < v, or (n, > n.), these crystals are called negative crystal. The spherical
wave front of ordinary light (red) and elliptical wave front of extraordinary light (blue) is

depicted in figure - 5 for (a) positive crystal and (b) negative crystal.

.
v0
& 7 Optic axis

(2) (b)

Figure 5: (a) Positive crystal (v, > v.) and (b) negative crystal (v, < v.). Blue elliptical wave

front for extraordinary light and Red spherical wave front for ordinary light.

2.3 Huygens’ construction of wave front in uniaxial crystal

Unpolarized light when enters in the uniaxial crystal, it splits into ordinary light and extraordi-
nary light and these two light component propagate through the crystal. The propagation can be
explained by constructing Huygens” wave front for these lights. To do this we should follow some
basic properties of ordinary light and extraordinary light; which are already discussed earlier,

still we summarize some of them here.

e Some basic properties of ordinary light and extraordinary light :

e Ordinary light is polarized normal to the plane formed by wave vector and optic axis.

Extraordinary light is polarized in the plane of wave vector and optic axis.

e Ordinary light propagates with same speed (v,) along every directions. Extraordinary light

ray velocity is direction dependent (see relation (9)).
e Along optic axis, both ordinary ray and extraordinary ray velocity is same.

e Ordinary light wave front is spherical in shape. Shape of extraordinary light wave front is

ellipsoid of revolution.

» Below some figures are drawn for various cases of EM wave propagation in
uniaxial crystal. In all these figures - 6 to 9, blue colour indicates extraordinary
wave front (elliptical shape) and red colour indicates ordinary wave front (circular

shape).

14
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Figure 6: Blue colour indicates extraordinary wave front (elliptical shape) and Red colour
indicates ordinary wave front (circular shape). (a) Optic axis (dotted lines) parallel to interface
and in the plane of incidence. (b) Optic axis normal to the interface and in the plane of incidence.

(c) Optic axis parallel to the interface and normal to the plane of incidence.

o-ray e-ray

Figure 7: Blue colour indicates extraordinary wave front (elliptical shape) and Red colour
indicates ordinary wave front (circular shape). Normal incidence of light. Optic axis inclined
with the interface and in the plane of incidence (xr — y plane). Note, extraordinary light ray

deviates though the incidence angle is zero.

15
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Figure 8: Blue colour indicates extraordinary wave front (elliptical shape) and Red colour
indicates ordinary wave front (circular shape). Oblique incidence of light. (a) Optic axis parallel
to interface and in the plane of incidence (z — y plane). (b) Optic axis normal to interface and
in the plane of incidence (z — y plane). In both cases, BQ tangent to ordinary wave front, BR

tangent to extraordinary wave front.

Figure 9: Blue colour indicates extraordinary wave front (elliptical shape) and Red colour
indicates ordinary wave front (circular shape). Oblique incidence of light. Optic axis is inclined
with the interface and in the plane of incidence (z — y plane). BQ tangent to ordinary wave

front, BR tangent to extraordinary wave front.

16



Polarization of Light

(Part-1I)

Palash Nath
Department of Physics, RKMVC College, Rahara, Kolkata

email: palashnath20@gmail.com

April, 2022



Contents :

3. Classification of polarized light  ..............................

4. Production of linearly polarized light ...........................
Dichoric crystal ........coiiiiiiiiiii
Polarization by scattering ............coceviiiiiiiiiiiiiiiiiea...
Polarization by reflection ..............ccooiiiiiiiiiiiiii
Wire grid polarizer ..........ccooiiiiiiiiiii
Polaroid ......ooi

NICOL PIiSIM ot

5. MaluS Law ...

Problem (solved) ......coviiiiii e
Problem (solved) .....coovviiiiiii e

6. Superposition of perpendicular polarization ...................
7. Retardation plates ...........coooiiiiiiiiiii e

Quarter wave plate .........ooviiiiiiii
Half wave plate .......cooiiiiiii e

7.1. Babinet’s COMPEeNSator ........oovvivieeiiiiieeiieeiiteiieeeiieaneans.



T mmemmemme—1 N B A A SR e S S AT i el A O e
Tolarizaliom. o} Lig bt Rge — 17

3 CL%&%%{C@ETLO}E?OM%% R%ihi :

St ts alveody clcussed thak It emlted Fyom Souncd

~Hemoivn Lm?olwfi%ed ox v ofhur wm(ds, xandom% Poumi%@.

St fs posdble to convert suche HTEPOXQTU?%ecL ha\v\’_ oo

polanized Riahf—-

Bosicolly polovazed }Ziahts ang,  clasmfied Ob ;

J

D Lineonly PoLcmfzed ox plane polonized

¥) ELtfP%?coﬁj PoLOTL?%ed

135) Cixevlanly Polomoied .
On cost % JMinealy poumf%ect an:?’ (v the plone polonized
Y;ﬁ‘ﬂk) , cleatxie Feld veetor tn EM 0w Yes Im & Yixed
plone . o .eLLiPh"ao\mﬂ poL(nG‘%ed °M”) the  electxte %1°eld
vectss trlweyses O el\fpﬁ’caﬂ_ path and Ao %mf
cﬁxcu)?.&ﬂ)lﬂ POMZ&:\ )ba’ht (Depen_dfﬂi o the Freetiom O%
yotallon. of eleshyie jReld veetoy on € Upticol path ox
Sxadon pafL, the PoLaﬂf%ed )?fahi: LS Waned to be

@) Leit eptieolly polomized (LeP)

SRyt o o (een
¢> \_Q%JC ¥ Q,Ujilf’la P ng;nf}ed (Le P)
d) R\oﬂht 99 3 (Re P)

Below e wepresend he di’aamms o} varjour types oY

pokmgll_ed RfS:\;h
conaides )%1 pwe 5 P}’_OP_Oaﬁna a)?ma Z - 05,

“ 1
\’% E(%;t) X d E’(z)t)
j 7
v (0) Sie wfew z

b) Top View,
Eﬁu__ﬂf’_lg,_i : Lo polonized wowe <_?> .
E(zjt) 1o expyesston. for £ fneld , dave

PePY :

okion. diyection s Z - axis.
O 1 lniicis A alltavad T T AP | wmid | s e




EYZ,’Q

o o
Side 9tew Top 91w

o Z-0xis; the E jald (s
ven. o4 B whieh 15 wotaﬁna about Z-
aW?L q *® (24 Heal poth " countey

3L olfr;‘-g s eoL\fp
C_LOC—K/ aj\o djqd’edhm .

@ Note 1 REP ox RCP : Thumb o} the ¥ight hond s %era
TY mopogtoI&nL Qixeel'on. omd clnsur\a
E&,t)
Sde e, top view Ez,b)

wovewment o} the rest ﬁ?gers aﬁves
Ff’am—i&z : Lejt ethphocaUd polanuzed Bght (LEP).

z T ¥otahon. Qsrection .
o On the sinlon 0y g
Wave s p’mfod ; Z —diyeetion . E }f eld

LEP ox LCP com be
xepa’es@n_’ced ba us“ﬁ
Le_ikt hand .
aiven_ bd E(z,t)- E }reld oveocm Ls xootahva
oboud Z -0 an. eliptfeal poth M
clpeywive. iyection .
4]
® RcP ond LCP can be 'a’e_.t)'b’e‘ée‘rd’ed s m.at

® ote 1 Sv some boks we WLOZLU%\%A thot +he
convension. oy yotohion d¥ectfims are Foyeysed betoeemn
ReEP omd tEP oS0 Jeor Rep and Lep,

= [ AN~ 770 e e e e ——

g ° >

Fjwe= 484 @ Rt ellfytfeally polanfzed ght (REP). Wowe
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4. Troduetion of thw”ﬂa polaruzed )Zah,t -

@ Tolantzalom \ogj Dichosic cxzota]l 2

Dichovic czﬂs'rol s a knd o  anstrople ( uwfawoal) czfg);d‘al;
9 3uch cxaé’mk, unpolonized light »pldds into two polorszed
comporants, One becomes Potamo%ed the diyection oF
optie anis ( e—xwd) ond  omothey polouzed pexpen,dfux}on_
to the epte ows and PXOPOﬂaYQ'S 0A  O-Y0uy- Fuﬁrhmr}om
Al ahoyie c_%s’ral e} one 0% +hose Pexpexxd\gm
poloruzed companent @f‘cs a%smfabed ond the &YW‘}‘M?_ pXiTPOa"
ags  @hthoud 5%7536?@ t obsoption. Thoufwes & dx(lhmﬂd,o
C\ﬂ{j;‘al 0%— %u%\CJOQ’ﬂ-t +hiakness aeom Pg'oduoae, P\.OJO.Q. POLQJUQQ&
ghie  Tounmalime s om example of dichowie C‘—’fdﬁ’m’—'

% \ )
A e mmat

Fgwae — 19:1 ¢ “Tao Agmenaional p&foﬁa{_ Xe{)'xebexﬁ'aglm. {731
C&?ﬁhﬂxtﬁm. ABRCD 13 zegxeaen‘rfvﬁ o d\z—hﬂnc @xzrﬁral_- mﬁd
yized Yfﬂh): pIOp % %omhaz\_ enters the Cﬁ/h
B e A
and t(-df"&ed"?my— pommb%oﬁﬂnozemﬂ NOS b
obsovbed. /3 , plang polam%ed EM wowe proau
with.  polanyzolion olzma d—df’a’@hm-

® Tolovzaliom bd deﬁﬁuo'ha . L

»%T/\ B b /l\% =7
d Sedlnen_ .
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;TM phanaweno oo% poLaIﬁ%aﬂva oY )}’ahj; b{( Aipdle o o“j
1S yepyesented n t+he. olove dfog(xam. oo
Grosldey unpolanized X{ht is Pwop@aa}r?na odlrma z—df’xect?’m-
A Brole  scalimey Do the podii o} the IZht w@ill /s‘ranic osed o=
‘how'a n x=Y plane due +to tnjlwence o} elechrie %\Qﬂi\ oY
uY\.PoLOﬂ_?'zed EM Wave. Light beb Honsvexse COQA/S) )_,ahf
ewitted Jxom the ascﬁtmhora Ppoll aﬂm\a szqpendx ewdloo .
dfyeetton. o Undident E,"ﬂhr il beeome U pelgie s
Lght or ok’ K= 0D 19 é{—?otamied od vice —
q P P they tham the plame o}
veysa, . tHowevex, X% anpoaaﬁna o g
'\7‘?&3’3’5&:80‘(1_(!:»6} /x—él( P'L(lm e His Q,X(IYV‘LFW> yemu

poloryzed -

@ _TPolanfaalive by vefletion @
5% uwo@ﬁ%edy;i aejlieted Jpom the intexpace o} oo

dSetectate wadfo, than For & pantreudan. & o o} tnodenty
Ccaﬂﬂd Brewstey’s Omal@ +hae we}j\g‘c’@d ght becowus plone
polomyzed o&rmd the vormol dfreetion. of the ploame o
‘5u¢u§$t\1€ Qo went O%- 4hege. Avelectyles camn
oht  also. O txons—
plone, o neidenes.

Peidence. : ’
a‘ive, ~tse o PoLON%éd ‘Hohsmitted

tted Q,ahi tha Polcm.?%oi&m Nes tn

AL

vndy ynacium_
ond Mo one he *a'eﬁomc’r?ve L_nc:hbceﬁ cz% H},‘L :
%XMWQMQYL yfﬂh:t tf) CUM.?’Y\@ &Y’——d to wo\'uch_o b&h}“}bt_saamﬁa
vespectively ; Ahan the Brewster’s C’mﬂ& I glven oy ;

Op = f&ﬁl(nz/@

| °%ed

l 4 Ou}mhjj
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Ths 1o antijia mode to  pyoduee X PoLouffzed EM
wowve. . this deviee, thin. copper wives ane ploced Pan_oﬂszl
to eneh othen . SF unpolomized wave posses twough T +hen the

electsle Yeld component panolld. to the coppex wires nluentys

the Ywee ©echions of copper to Fhw ench e, The
y of EM cwe Yo this Potmﬁid?ﬁm_ s bef’nﬁ abscybed

ba he elestyons o acuon e Kanehe eng q - On the o+;hm_ ,
hand, o such.  proeess {s obsesved & PoLilmoi‘Ox%ﬂ— diyection. |
pexpenﬁ edan 1o the aﬂ%{nmnt OQS CO’P?QW WYES « ,

K - /:f
' ;*-/H”}/' z
zf 4/% -~

Fywe — 24.1 ¢ TThe wive qid polonizey, Coppey wires A alamd ,

A ﬂﬂdfqechom. Ovpolorized _LoaM Pxopodmﬁwa
7 _ dfxeetion . Aytex P&ssﬁr\a moﬁh the wize

(ta ) omnomgement , Hhe eleatsle Jfeld 07 buain.
3—di’xec'h°m ae‘ﬁ obsoybed and the

emexaenj: Yotd become Qfm.an)%d poquc’aed &Q(md
X —dwechon .

B S G G S

@ “Poloowid

Polanesids 01w wzﬁ%fcgaud mode thin transparwent Flm o}
chain  yolewdes ol Pmaﬂ)&lto each othey ond the moleewls
contodmn  ofevs (e-g. fodfne.) which. prowide ey h.?ah_
conduah%ﬂa olbna he )leﬂa‘rﬂ o} woleedes. Dhen M wowe
pASSES *HYKOLah polarsids , dug to hjah wnducho\ﬁ@g &'Eﬁa e
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lm'afh 0} mﬁ Qchmm_o momw%zs, the polansids obsorb electric
Aeld  Srrengh tn this diechion . The emergent wave becomes

Xy po ‘zed the dfyeehon Pexpemdiwlcm to +the
Le,naf’f\‘, ok )lovwd chadn. wmoleendes o polanaids.

@ NE(!OL thsm M

Nieol prism s /Speuc’uui des?amza optical- deviee wmade From.
calests  eyystal . St %5 uled 1y produee omd Q S?.sz%pomoied
,Y,\ahi’s- ' w  we a‘ive +hae desa?_p’c\"am and  Wovking mechomsm.
o}  Nieol pz‘ism_ ot swilable dfcamm_-

x

e-¢
. S ey
©

: F D 0-
(b) Describes the thsee N
Atwavatonol aeom_e‘h'&{ ok F \\ A ,//‘\..;680\\ g
Nieol pylsw . Ot @0os ™ —"6’:"’) &'
tnvented b d PlGom Nileol A X P |

A |

v 1899, TRSs 3 the st
won wade devfce o
produce Potcuzi’%ed X\e]ht

Nieol patsm mode From
vhombohedyon. shuetwe
o} colcite cyystal @hose
L@(\QTFL VS en. to be
thyee Hrus of s breodii. B

The ivﬁ{:?a)?. yhombhadeon ) (b)
DFAG BHCT. The andu oy xe%meﬁ"nd Faces DFA & and
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BHeT with  he od jacent edges s 1% That S
/ADc = /eBp =7f

TThe ADCR plane 3 ome of  principol seetfon (ponalled to

optfe 0s)-

Nen the Hao ze%xae#na sunjaces of the Nl cxaotol LS

cuk a)ma the plomes DF'AG], ond BI'¢/H’ ahfch Feduces

the audi ongle o the mincipal  seetfon Jpom ¥ to 68
/ADe = /¢'BA'= 68° .

Fothos, the ohole system @ cub fnfo Hwo <quol halves

Odlm‘a the plome A c’! omd +hese two halves OR_QJmﬁYLQd

%oaei’mn_ . eomada balsam exy. o

The culfng plave ALc/U! omd the prineipal sestion plom

ADC'p inteveept each othey an\a the lme A/ sueh thokt

Z_;)A,c/ :@C1A’ — (900

Thoneymse,  Nieol prfsm s combimalin. 0% two ldentieal
pants  joined fogethon ot tromsparent  conada balsam

er. Omg pant fs DFAG AL’ bounded Xeafm and
the second ON2 ts BWeT'¢’U AL bounded zrea{‘,cm.w&dcmg‘
pasted “rgetoen oF ALl plane.

@L) Two Ch°mnsfomﬂ_ xepxesemmmn_ oy thw PZﬁﬂ_@tPQL
secton DB ( see Hélm(b))- The oxtginal  caystal s

DAge wih T owde omalm; Frove @hfech the DA'Be! {s
cut onth 68° qude a“ﬂu’-" Ne! 1s canad polsam )Ladex.

Calcste cvaskﬂ_ is atfve cerystal ; thot wmeans ¥ejxacehie
ndex o} ordy X%}hi <saa m) s )?mﬁezr o-H’tﬂYL +tha,
smodlest vl o} “yejyactve index o} exh(flc“a’d)mm (1!

(;ﬂd ne). Note, mld cﬂnnﬂ the opte oxis of 04 propaga-
Horo ¢+ boHu the 'xe%‘mchoﬁa tndices become Qquol- S+ +wo

BoY'S (o-—zragmand e-—xQJ{D P,_,O.anml pevpendfudan to optfe
axis then dHerence 0}  wejpactive indices €5 MAXLmam,
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For coldte exystal,
Mg = U658 |y, = 1'486
and the wejxactive index o} canada basaw s 1'526. Thak
Z\r\eoms canoda balsam & ophi Yowe Yov o-xad ond tt
o op%?coﬂa densey Fox e—xoy dndle. the L%lhi_ s c.owu"va From

colefte wmedinm. -

i W G U G G RN

Unpolanized )jﬁht O bex e—*’j@‘i'ﬂa tnto the aMteol grism
From one of its xejgm@#“a sunfaces (/30%1 DENG n ﬁdm‘
(b) o¥ eguivalent to DA fn B - () splits fato
components 1 0-¥%Y ond e-y. pr connda bobsam Lage,
O—ma ads totol. tnteymal Xe%le,gtf’m becouAs Fo¥ o——xoamnd
conoda  oalsam .Y.mdew s O-Phocguj forwr . On the othon

- h 4he conod balsam Y_a-dear and

e *ma passes -waoua ; | S
emexges 36q'owm_ e oppcs?,‘ce Xe%xachﬂa suzjace o Nicol prsm.|

e—x% s pomnf%ed n tha plong o} Fz"m_dPaL sechc"m, S0,

the CW\S&’aQ‘ﬂjZ ¥y (e—xaﬁ> becrmes ,Yfmﬂnj»d polaruzed o
+the PL(m_e o} Pxﬁfn_d?i:ol seeton  OF N Ceol Px‘ism_.

. ’ . 2 X Mht tonswi

S«  Malus's Yaw ¢ Oas plfh?f,uapﬁmggz@?d%«dhgheﬂ s

This 5 e)?e'x?_men obtarned ohseyvalion. thok A fn-}enf&%

o} A PoLmv"zed Y’ga"\f varuae ot the ongle berween
Aonsmite

pussihg Oxds’ ok the polanoid and polonfiah%n_ diyecHon. O
neident plane Powax%ecl Xta\ﬂi@: - The f’,wiren_sb@ 90T XL
s aﬁven_ bﬂ (0% txonswutted X‘&“g y
1(6) = To &6
whera, O = angye beloeen. ?L&m o} PoLwif%aiﬁm_ o}
treident plone POLOUL?%ed ght and +he :
passing axis Of  polanizey -meouah_ which it
WAL Ay oma ks . . )
I, = S«rrau_s%"ﬂ o) tncident plome polaruzed Lﬂhﬁ.
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Toloruzadd dom. o} quht ’DHQ -925

T,

x(i 111»
I Z

] E(z,Y)

Fuwe - 054 :+ Lime ¢ poloruzed Laht Fxopqagbnﬁ
Z- cbxec‘mm_ neident wawve m_JreYLsi’ql T, amd poLmuzim
Afgection. 15 wmkma angle 6 wﬁh X =0XIS A Lan_md £s
ploced such +that T P&ss QXS LS X — QXS

' ccmuwa ouk  fpom  poluzey L be ¢ - PoLaTuzed
+:_§: Meons PoLomaaYhm_ plong vs yotoked bj omabz, B
Rom Malus’s )lsuo m*e%&_ﬂ o th_t cnwunﬂ ol From
poummd cotl be.,

= Ty 5526

@ Note : Sf% unpoloized lght passes -H\wouah_ o polanetd
thon the m:\'eﬂ-ﬁ\ﬂ/a oy ouiamna )fﬁl&h)ﬁ polcmfzed lf’aht
becomes hﬂ%’ oY Us  oxigtnal m_’remsdz’- Sv un{;oLom"zed
Lﬂht PoLanfioiu;m_ dfreetion. contHvuous \Jariies FEom. 0

o O cmam, WYt the Passma axds 2% Pomliﬁ?d-“lﬁiﬂ%we
Putensily of outgeing plome polanized MghE il be
atven. by

T = T {&s>6> ; cwe"«oae ovey 0 Fyom

— 1_0/2—
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D Boblem — 96.L ¢ An elfpse n & coovdnale PLO.YLQ sy x-Y
°s wotabed aboul %-00us. TThe centwe of the clipse cofacide it
the ox‘fa&n_ 0} covydfnale . Fihd thae aemm_od?_ Form. of such
Yotated etuopse,-
Sobilm _ S -
o o %
The votoded ellfpse s showm

"F\’La_ Odjaeon_t Fowe . A
2 ond ? &Mn Sdmmhﬂ a3

O% He QLL?PSQ.

In. these comadinoke varwables  +he Form = ol

o} elfpse Ul ©Rj U
X+ =1 (9_6-1)

e obtornd bﬁ yOfg}\ona x-Y 0XE€s

(97) _ s s X
i -sing G /| Y
\__,_\/\*/
Rotalicon. makvix by angle +<f

Now substitute the ‘?‘xcm,b%dzmahm yelalions o} @6 2}

bto (26-1) 5

'

(26-2)

N OR_(OCCO"S‘P"’ﬁﬁ'm-CP)_]-J—(pcﬁw_cp—rg@stp)_i

9t tokes the ae\'wuﬂ_ Jorm. oy ,

Ax® + By + ¢y +‘iD-OJ
oD?w'(SL J\Bcand:bam constants. This 1§+m

en(uoiLmL_ o} xotaked ellfpse.
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Rlordzaldon o} Liaht Ryge- 0¥
D BPblem. — 2F1 ¢ The ﬁeﬂﬂmy_ Fom of  yotaked ellfpse
o x-Y plane about the wﬁaﬁn 2 dfven_ by,
. AXT+BY*+ Cxy +D = 0
Foad +he amau o wtoHon Tn “texms o} +the cowtants AB, ¢
and D. :

SO\L—LQEOT\_, s , Y 5(/
Ouppose P be +ha Xo’fﬂhzm 5 g » t

angle, of the elfpse. Ot Ts obiowr

-A:E i Z—-3 be the &ammh’g @

0ods of +he wioked elfpse then Tn o > oL

—hfamjgc‘lmszd coydinode (o’Z—— ?f), the.
equalion_ o ellipse @Il be,

o= b

W ALY ONVD H)_Q, 85\/8\’)_ qulml_)
) \A%9_+sz+ C’)C:y 4+D =0 (2?.1)
8 o be -yansFormed n 9’2” g o wgi’x}u_ theee ol
be v pyoduet teym.  of X J. |

The  ~vounshermolion. -
4 _ CD‘SCP ——ﬁi’h_(P X
(g)_ Son-<p Crs P g

jg‘%qiﬁm_m& Yov yotolon_ . | E
!

angle. O -—CP.
6%5%?%@101'3 the. troums Joymathon nto (@1-1)
9 - ~ 2.
A(Raso— Jaing) +B(Zslnp + Jem )
4 ¢ (s - ’gsmcp)(szsﬁmw go:scP) + D=0
Now we have to seb the ecoejjyarent o Z§ to be 2eo,
> - An2P + BamoP + ¢ s 2P =0

C
= —ton. 2P = A B
Here Lbe oL -’t'\wﬂ_d +he  xotokbon. CU'\aUL 0'}7 eLLEPse..

N7

— T T
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S. ‘Supexpcs&?m 0f pevpendiewdan polanzed y;_ﬁhjg :

S this seefon. we ane am" to dfeeuns the %crxwm}'w‘bn, ot )
lptiealy ond reudonly polbnfred B dus o Superpo> o
0f two LY polfzed Xgghl of pame nger{,uen_eﬂ bout
Cﬁ%’c@fﬁﬂa bﬁ{ phose omd Funthen two woves A PoLOJU%ed
pPevpendiadon to eoch othex.

Conadey twn  monochyomodie  wWave 1S Pwopaﬁaﬁn@

Z-0xis. 0me of which polom?vzed X —0xis  omd onothwr
(28:0)_ X~ pOLClTL(IDLZQd yféh/t- . _E—’szt) :;(\Ei @S(K’z—wt)

g - polrized nght g Ed@)t):gEzCus(Ki—wt—%)
B’)_Ojoe dj%-bQXeme bejl-ween_ oo wowes ‘ES S,
At Omd onbity Z plave (Lej- ok %z =0 plane For sfwgblf—
oty ) Hhuse two elestfe Yfeld ibalions would vepresent SHM
o the Form 0%
(251

These —too W% chpendfwlam oobyoalons would aix/e yise

d(t) = Egy Cqs(wt+8>
to yesullunt vwonia¥fen. o} eleetyie Feld ab % = O plang.
The vesultant (s,
Now we hove to Find oub the tyefectony o} the vesultomt.

AKX
> [d)= Cos(@t) Cosp— Shn(ewt) st b ,
By /x e Eos(at)
= (‘a)wsg_(l‘cﬁs\’(w:\:»sfng) : E
27V ‘ E —>Z
> = (%) | atns = ) G peos (0 +5)
—~— 2 d

cUs(wt) | + (?t:cl_ ) Coss

—— S - L e w w—
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SOC\ADJ‘L?-\H both. stdes we get,
[l_ (4 E1>2 ] Sty = (a/E2>7_+ (OVE_1>Q—CO'52§)
.
’ E,Eq

R 2
=> —E::—?_'i' &_2_ _ 2904 s s = afa>s (29.1>
2 By E,Ey

TR velaltion ¥epyesent Hu e;\udﬂﬁm_ o} elifpse (xo‘r_o:f‘ec%>
Ax+ Bﬂ’l 4 coca 4D =0 (see. szobwm—%-l)

0 2 L 2 (oS
A= }/2 B= 7E2 C=—
B 2 E Eg
D = — am?d .
The wotaldm 0nqe ; e
-7 . 2
3 S ‘ -—& — 4 1 Eo
pq%%um-27-1 < =45 tan (A—B = 3 tomn T
EZ _E??._

_%‘

L tan' 2E B Wwsh :

Dith e hdp of these two elolims (29.1) omd (29:9)
@ com Frd ouk +he phape 0} the euf\’PH’c_@lRﬁ polantzed
Ught  pormed e fo superposition. oy +wo
Pefb’Pen_dfe,uLQJL P]—(lm POLQTLJO%ed R?ﬁh,t 035 Aame %Wequem&a‘
Ut dfﬁexew n phose (af\/e‘n_ ba (28'())).

@ Accoyding 1o (2%1), worodlion_ ok 1;5 L E, ond
szidifon_% a 15 ‘_tEQ_.Tanimeam Yho ell,\Pse o%_ (29.9
w‘%ﬂL\ZQBownded b<\( the zree-ﬁmalsb f x-drghh —E to+E
ond ok éf—lenam —E, to +Eg -

¢

= 7 ' o - i W
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® Speaol coses oo
the Yesuwltont Pom%ojhoﬂ— dug o

Lonyzaldom ( pexpendy edon o eaeh OHUUL>

Hexe we xejPzesent
Supex PGSOLhOGYL oy Dvuon po

4

* let us eomsider; E, ®E, OndEs ‘“a\rde az’eoutex tham_
Eo. Assume E ~p = Eo -
Then. (29+1) becomes |
. 9 0 2
o{LJrﬂQ—Qood @sH = & s> 1 E xE,=F

ond  (29.2) beeomes; . 5
_ L toqt (2R RN .
(?_2 ¢ p G—(EI—EQ):Qem’d
o “ wmdlL
U the \\JJJD of these two welahéoms armbey,
e ﬁﬂdo the  dxojectoxies o} the vesultomt tpHal |
polanizalion . Buk " % fs mpt cbvfous thak Dhe tk s
JISE eh)f’c?aﬂld polanized oy alght em‘?phmud polantzed (RER).
o & we hwe REP stle - Tn x-y plone then_
From the d&ﬁmm shown. below T+ s obfous +hat
£x 9F
dt
oL be 7 — axfs ond jw  LEP e veetoy
cx0ss  product Q) be directed O&Dﬂa —ve Z -0xis.
44 «€ g
i
AE
E ot
z . — K O %
R hk e\ﬂp)ﬁo Lejt eklgpho
* PoLomfzed (REP} Poum?&ed (LE P)
Ex %% s Qﬂlma X c_id_g ts divected
19 z_omd’s avma —ve Z-axus
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Oq thfs wmsldexed e ob Z=0 plang,
E (%) = R E s wt) + gEQ_ (s (vt + 2))

> OB _ w[/,’i £, a0y + YE, sin (wt+ %)]
N — A A ~ '
) s> Ex9E= ~ o d %
ax ' 4
E, ws(w) ep_uz(wtérg) 0
_coE\%?_xL(wt) /(Eg_%fy\,(wt_\,%) 0
— - WEEy Eﬁm(wt)ass(wtqt %) — afn (wE+s)Cos(
> gxég = — OF Eqo oI D ~ ._(m:_g- S %
dat \_—V~—/2_
| ®Eo T ~ ond

The veerss exu%s P’xodu.d: s +e ol K52
—ve @henn 0BT -

o ¥ (e howve s (
- The  Bneon X () = ELCGS(CD‘}:> X E, Cns(ciﬂ:)
o Q :
polaru’zalions {HM = Eyp (s (wt+ b)) R E, (o5 (@t + 9)
to produes ellpse
T a')'—Q_fzf.d s & = EOQ— S«ET)??)

ot yotoiom Oﬂ\alﬂ,
1’_ o E_E:??;d 50 C :<E°'— E°—)> 0

LEP o 0<$<T ond REP For T{H2X.

L&)




Retondaldm. plads s +hiy, plaff  woage o} wnasda) crystal
(dcrm)o(a Ke%xatﬁva d‘a STOJ) gsuch. thok he optie a5 yemoim.
ponallal  to the 'xe%xaaﬁ’va '%&CGS o} the plole .

o % m{\d Y,aht xq,d Jols on z'domddmrm PLO\'E . ap

. wLbﬁ’rzycm.ﬁ polamBaligy. stole then St s tto oo
polonraaiion combovgneds thaide -the yeyond oy plols .

Dve  componznd {5 polonfzed olm'g the optfe ands ( bropagalas

ob e—qu) and  Qmethe Ode perpendyedon. +to opthe

OIS (pw?oxﬂﬂﬁs ob O—Xod),

T ————— y —r== e =
S




S — — —" L —"—." i—— i . —— g

Toloo{zalion. & Li’ah?c Trye - 27

3

L

Z= ?)LQ‘{LQ.. Z = A ?\Q'“f.

Suppese  Lght  enteying the yetandation plale of Z=o plane

ond the edtplane fs  #=d plang. Fnthoe e coﬂrLs%‘ﬂex
that +the ephic axis o the plale % . x- axis,
The e-voy 15 polwuzed annqmoph"c axfs (heve =- Q'xib>
Do, the “o-wy Ul be pol
Ladon. to opife Qxds).

— X and e-7% trowell A
O 9 qjdo O.d We} t'YL 'H'\—Q. Xd@ndatﬂ”ﬂ_ P‘_Qj_e.)

PV Ok exystal .

tho, UL be phase difjjerence between o-Yay and e—wa,d

of et and sneq they e pevpendludon. to each othex
Hud QI supeypase  to dﬁve Slferent stokes o} polory’ 2oy
Cdfsuu%ed o sestion- G).

Let,

E, = ﬁm?lf—{-uch o} eloetyic %@odd %mr e-wo‘%'
ﬁw\?ﬁi’ude o} eleehie Jeld Fox o,},ad.

Eo
Thee & Z=4d (ex?;t swijdea o}  yerondation pMe)}-

I

zed aJ?zma \d——axfs(pez;peﬂ~

otth  diffevent  speed *Pm’ouah

S e e G i G i, e

v e-3ay @ E,(t)= E G5 (kd- at) i
’ Fox O-Wd - Ea (t) = Eq G (Kod - w+_> _< >
KQ = E—- = "0“0 ‘
% o 9’ ctand o
- 0’ stamnds Jor oxds

e = Vo == ‘@ stands %—@, exta ovd?

TR T icnie of all tavec) T e T R N— . ———



P AN A S S A S A S S AT T SEE 5 S WY GE AW ST ATy NI e e

lonfzalion. 0 L%(hi _Rge- 24

B )= B @rs (Kod - @)

O o e e )

W R B S ) 4 ) S

< 1
% E
> & = ws(v+y)
Eo
_ [@ved - @4 (-
LB?\XTUL, Q’— (T'—(Dt 4 2)“ c (“'0 YLe)

Fy Cos (T+ )

E (o} []
L - T asy — stnT stns

[Z)ee® -~ (- ) S

VZ@?&) From (32:1)

e
= -—E—CUS% L ( /El>] SNy

1
2z 2

N By, o Ex 2¢ _ 2ELE Ex\ |
/er + (Fyer) @ty E\;i@s%:k-(?*> sons
E’)__ 2 1=2
= __i._\_ 4 _ Q_E’xEd

Ex EX

L 2 BBy

sy = 6&\')2“%

Thal  meoms  Hhe emungent o om ¢

0 © .0 o ’b’d’OdeQd—lm LQ:tL
wdl e ethp’c\co&bd poldrrzed Czﬁ ‘E}?() PQ’KPen—d_lOUJ.v-QE_
components ma&/em ba (33.1).

e

o

Oﬂmd and e—xaﬁ Qe som  yelative phose shijt,

N Y
4 - : i g ]>¢
g } > z ?): %i‘(n()‘ne)

Sucident
Ex = E.005 (K2-0t) F  Emeygent
c/dps Ex = E, Gos (KT - dt)

Ey = (rs(KZ- wt
4 E, oo( ) o Ey = Ey (5 (KZ- @t +5)
N0 W R B T P P Y———

@ Note i prtey PQSﬁEY\a v yetondalion. plate two TO‘dS




@ Quontey wowe plate
St s o yeromdoken plate ohich.  imtyoduces T phose df%ez’enfe
between. o—ro«a and e—xad.
OL we considey -~ve cxastcﬂ (o> YLe_) then,,
9= ‘DTd(Y\o—“e)= R
> 4= S(me) Y

. _ - orce
3| 4 = %‘-(N—M) j @F Y E ——

A lote
@ Mo}y wave plote ; Thiekness of queder Qave p

This xetondalfon plote fntyoduces T phose dfexenca
between -y ond e—weud,

oy —9e ety stol (Mo> Me)
s= @4 (mg—me) = T -

> ! d = 4 (M)

t—,mckmss of hal} wawe plate .

Tl Babinet’s wwmpensdoy

v 0. given quantey wowe plofe (Qwe) ox hol}- wave plate (pr>
?_‘\25 M@KM%A ond (YLO "nﬁ) beiwra erd ?,’C tﬁ use:tu]_ 10 WK
I @ Pw?-‘\\awlwl— e Lena’fh_ A and n the vezra elose
xeaiwua o} 2. The veldtms' are at’ven_ bd;
= 2 (Mo-Me) ; g QWP
4 = %(%—ﬂe), T HWP,

Sy the contony , Babinets cxmeemscﬁtm' s on vwvably

Xé[mmmnmpm-% com be nseful Fw O wide I < o}
A to Mneoypoydla desired phose shijt  between 0-¥ay and
e—xad- Below, the sthructuwra of Babinet’s comp e salty

5 <hson with. e mﬁxﬂ Meehamem. .
descytbed




Polanizlon. o} L‘fahj: - 36

8@'“’9‘ Snerdent ¥ay
Ar B
- :c@:: —
z ' - _ . o "I M&yometer seretd
:D * C ]Il1|l,ll|,|l1
y
emmaea’cwa
Bobinet’,, cmn,?enscmw consists of Ywo Ahin 2ight a'nahld
Prism 0} uniasdal cyyl. Ove s AmD amd GMo U

Wﬂd e gmomd ‘*Oﬁeﬁfk ot +4he potenuse. Ophe oS

0} o P'xfsm_ 22 Olvﬂmd pexpendfwm ‘o -\—hgitoo;k onothey .
Lfﬂhr ¥y allowed to pass Hwough ;Pn!z embtnshon pueh
“‘hat w0y pao\aoacm‘im_ Adyection.  yemabyL pen)ﬁnchw.uﬂlo To bO‘PQ_
o?tfc axes. S The yogyanm_ Wism_ ABD hos ophe asas
pmmun[ o x- OLDq'S, pzr&;m_ c:DE,ohab Tt Pann%l*?:o g
arus  and /Udhi: 2% s PZ"POaw‘:m@ almﬁ Z -axds ,

Due to mdual perpendsedon Cﬂ—an‘m@:\: o} optie S
the wole o ¥y ond M“%I IS Yeveysed in @O pants as;

foy pont ABD :
e-vay £8 o~ polavized (panalld to opticaxis)

0—-7% LS = POb]Uo%ed vexpendy
ki < (pevpen don )

fox pant BeD

Bm.cxnzl o opb"caxis:e_xa,& 18 d- Polml.?%ed
Reypench edon 99 2 00— s - POLQJ"UOEGd ‘
That weans  yelakive phase shijt com be tuned bekween
o—-XO-ﬁ Oun_do e—?fad bd Yo +he. %eﬂaia e path
Tengih o Jght vy pass?,na Hrough pant  ABRD omd pant
BED.

fdex Oh_t Es Sso
S T e g e e o

B o RN - T S




T L A A Ml il Bl i i A

L?otm&ﬂﬁm_ ok Liah:t Rde__ 3"1

S} o ond do be the hikness o} o pants o} Babinet’s
ensakoy %wuah which ﬁdhf ts Pass"ua- Than. velakve

phase =hijt of o—xma omnd e~zsaa ts,

tody. -

— \'12)'

—we emn {5 due to weveysal

o} o= ond E—XOLﬁ From

pait ABD to pwik BeD,

i 0

With the oy the yexometey serew the PX'L&’YL ped ezam. be
,&ﬁ’g:ced Jovwand  nd  paekwond dixeaton. whieh. in efpeet produws
varuable  wabe o dg - Thus the phase shikt § betoeem 0-¥%Y
omd e—xond con be tuned.

TLRT A YL
S} L be the ‘Xm“eml At o} micyometey sevew sueh.
ot some stale of polomy2dlion.  ¢s bwudhj: bacdk o3 the
emzae_mt ’X&ﬂ thon. we  eam saé( ‘H'mt)

L Oowownt Jakeval shipt s equf\?o) ent to 2
phose shijt.

= TTo pxeduce < phose SHJS'\: the Xequ@md movemgnt
o} wicrometey sexew wil be

2T

_ o wdys _
b= T (mme) -

—

b




Contents

Polarization of Light
(Part - I1IT)

Palash Nath
Department of Physics, RKMVC College

email : palashnath20@gmail.com

April, 2022

1 Analysis of Polarized Light

2 Optical activity

2.1 Biot’slaw . .

2.2 Fresnel’s explanation of rotatory optical activity . . . . . . ... ... ... ...

2.2.1 Mathematical treatment of Fresnel’s theory . . . . ... .. ... .. ...

3 Faraday rotation

4 Polarimeter



Polarization of Light

References :
1. Optics; Ajoy Ghatak; McGraw Hill

2. Introduction to Electrodynamics; D. J. Griffiths; Prentice Hall

1 Analysis of Polarized Light

Light can be characterized by different states of polarization, which may be any one of the

following states,

1. Unpolarized (UP)

[\]

. Linearly polarized (LP)

3. Circularly polarized (CP)

4. Elliptically polarized (EP)

5. Linearly polarized + Unpolarized (LP+UP)

6. Circularly polarized + Unpolarized (CP+UP)
7. Elliptically polarized + Unpolarized (EP+UP)

With the help of polarizer (e.g. Nicol prism) and /4 (quarter wave) plate we can analysis the
state of polarization of light. Following we discuss how to detect the state of polarization state
of light.

First, place a polarizer in the path of light. Rotate the polarizer gradually by 360° about the
direction of propagation and observe the intensity of light passing through the polarizer. Any

one of the following observations,

Observation - 1
or, Observation - 2

or, Observation - 3
may be recorded and we can conclude about the observations as discussed below.

e Observation - 1 : Complete extinction of light intensity at two orientation (separated by
180°) of polarizer.
Conclusions : The incident light is linearly polarized.
Explanation : When the passing axis becomes perpendicular to the plane of vibration,

no light intensity passes through the polarizer.




Polarization of Light

Polarizer
LP AN 7[\ 3600 Zero
Source B . intensity
f > / \/ twice

Figure 1:

e Observation - 2 : No variation of intensity observed over the full rotation of polarizer.
Conclusions : Incident light can be in any one of the following state,
(i) Unpolarized
or
(ii) Circularly polarized
or

(iii) Unpolarized + Circularly polarized

CP Polarizer
or / //\ 360° -
UP No variation
(2) Source —Pp» ;. |
CP0+ uP / 2 / \j of Intensity
— Polarizer
up uP / //\ 360" -
No variation
(a) Source —Pp» —
/ 2 / v of Intensity
QWP
— Polarizer
LP X
cp / //\ 360 Extinction of
(b) Source —P» > > - .
/ z / \j Intensity twice
QWP
Polarizer
CP +UP H LP +UP / //\ 360" Mini of
inimum
(c) Source —Pp» —

U

QWP

/ z / v Intensity twice

Figure 2:

Now we have to determine specifically the state of polarization out of these three possibil-
ities.

For this purpose, place a A\/4 plate in the path of light in between source and polarizer.
Then, rotate the polarizer gradually by 360° and observe the intensity. Any one of the

following observations can be recorded,
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— Observation - 2(a) : No variation of intensity over full rotation of polarizer.

Conclusion : Light beam is Unpolarized.

— Observation - 2(b) : Complete extinction of light intensity at two different rotation

angle of polarizer.

Conclusion : Light beam is Circularly polarized.

Explanation : Quarter wave plate transforms circularly polarized light into plane
polarized light. After passing through polarizer, intensity of plane polarized light

becomes zero when the plane of polarization and passing axis of polarizer are mutually

perpendicular.

— Observation - 2(c) : Variation of intensity observed (without complete extinction)

over full rotation of polarizer.
Conclusion : The light beam is Circularly polarized + Unpolarized.

e Observation - 3 : Variation of intensity of light observed but without complete extinction

of intensity over the full rotation of polarizer.

Conclusions :

Incident light can be in any one of the following state,

(i) Elliptically polarized

or

(ii) Elliptically polarized + Unpolarized

or

(iii) Linearly polarized + Unpolarized

&)

(@)

(b)

(©

EP Polarizer
EPO-:UP //-\ 3t Variation of
r n
Source —P» | artatio
or Intensity
LP+UP
— Polarizer
EP LP 360"

Extinction of

Source —P» - >
/ : / v Intensity twice
WP

QW
— Polarizer Maxiiiii: of
0
EP + UP LP + UP / / /\ 360 Intensity twice when
Source —P» — >
/ i / \j QWP optic axis not parallel
QY’VP to polarizer passing axis
Polarizer Maximum of
LP+ UP LP+UP 360 Intensity twice when

>

Source —Pp» |
|_| / : / QWP optic axis parallel

QWP to polarizer passing axis

Figure 3:

Now we have to determine specifically the state of polarization out of these three possibil-
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ities.

For this purpose, set the polarizer for maximum intensity and place a A/4 plate in between
source and polarizer such that optic axis of the plate is kept parallel to passing axis of
polarizer. Then, rotate the polarizer gradually by 360° and observe the light intensity.

Any one of the following observations can be recorded.

— Observation - 3(a) : Complete extinction of light intensity for two different rotation
angle of polarizer.
Conclusions : The light is Elliptically polarized.
Ezplanation : Quarter wave plate converts elliptically polarized light into plane po-
larized light in which plane of polarization makes an angle with the optic axis of the
plate. So, when this converted LP light passes through the polarizer, it is extinguished

for perpendicular orientation of passing axis with the plane of polarization.

— Observation - 3(b) : By rotating the polarizer, variation of intensity without complete
extinction can be observed. Maximum intensity is observed when optic axis of quarter
wave plate is inclined with the passing axis of polarizer.

Conclusion : The light is Elliptically polarized + Unpolarized.
Ezxplanation : Same of the above (explanation for observation - 3(a)). Further, the

non vanishing intensity is due to presence of unpolarized light.

— Observation - 3(c) : Variation of intensity without complete extinction. Maximum
intensity is observed when optic axis of quarter wave plate is parallel with the passing
axis of polarizer.

Conclusion : The light is Linearly polarized + Unpolarized.

Explanation : Linearly polarized light is converted to elliptically polarized light after
passing through the quarter wave plate. The axes of the ellipse are aligned to optic
axis and perpendicular to optic axis of the quarter wave plate. So, when polarizer
passing axis becomes parallel to the optic axis (i.e. also the axes of ellipse), we obtain
maximum intensity. The non vanishing intensity is due to the effect of unpolarized
light.

2 Optical activity

e In broad sense, optical activity or rotatory polarization is the phenomena in which, the plane
of polarization of a plane polarized light rotates continuously during the propagation of light
along the optic axis of some kind of crystals (such as quartz) or during propagation of light
through solution of some kind of substances (such as water-sugar solution). The substances in
which this phenomena is observed are called optically active substances.

e The origin of optical activity is molecular structure of substances in solution. Due to helical
structure of the sugar molecule, it shows optical activity in water solution.

e In case of crystals, structural asymmetry about optic axis gives rise to optical activity.

e The plane of polarization of light in optically active medium can be rotated towards right or
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left depending on the atomic arrangement of substance. The former one is called dextro-rotatory

and the latter is called laevo-rotatory.

2.1 Biot’s law

Biot gave some important laws on optical activity after performing systematic observation on

optical activity. The laws are discussed in the following.

1. The rotation angle of the polarization plane of plane polarized light produced by opti-
cally active substance is directly proportional to the length traversed by the light in the

substance.

2. The combined rotation produced by two different substances having different thickness is

algebraic sum of the rotations produced by individual substances separately.

3. In case of solution of optically active substances, the rotation angle of polarization plane

is directly proportional to concentration of the substances in the solution.

4. The rotation angle of polarization plane depends on the wavelength of light and tempera-

ture. The rotation is approximately proportional to the inverse square of wave length.

e Consider a solution of optically active substance.
Let,

0 = Rotation angle of polarization plane
[ = Length of solution through which light is passing

m = Mass of optically active substance per unit volume of solution

Then, from Biot’s laws,
Ooxlxm

or,

0 = slm
where, the constant s is called specific rotation. It depends on the active substance and tem-

perature.

The specific rotation for active solution is defined as :

The amount of rotation of polarization plane produced by optically active solution of length

10 ¢cm containing 1 gm of optically active substance per 1 cc of solution.

e Note : In the above we have defined the specific rotation for active solution. In case of

crystal it is defined as,

The amount of rotation of polarization plane produced by optically active crystal of thickness

1 mm..
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e Rotatory dispersion : According to Biot’s laws, rotation angle of polarization plane by
active medium is approximately proportional to the inverse square of the wavelength. So, if
plane polarized white light passes through optically active medium, then, polarization plane
of different wavelength components rotate by different angles. This will give rise to angular
variation of colours in the sequence of red, yellow, green, blue, violet (in the increasing order of

rotation angle).

Plane Emergent
polarized light with wavelength
white dependent rotation
light of polarization plane
Active
substance

Figure 4: Schematic representation of rotatory dispersion.

2.2 Fresnel’s explanation of rotatory optical activity

According to Fresnel, plane polarized light can be considered as superposition of two opposite cir-
cularly polarized light (one is right circularly polarized light (RCP) and another is left circularly
polarized light (LCP)) of equal amplitude. In optically active medium, right circularly polarized
light (RCP) and left circularly polarized light (LCP) propagate with two different speed, there-
fore, they gain relative phase difference. This phase difference increases with traveling distance.
This continuously increasing phase shift between RCP and LCP leads to continuous rotation
of polarization plane of incident plane polarized light. Following we develop the mathematical

theory of Fresnel’s explanation on optical activity.

2.2.1 Mathematical treatment of Fresnel’s theory

Suppose plane polarized light is propagating along z-direction in empty space. We consider the
polarization is along z-direction. We can verify that the plane polarized light can be considered
as superposition of RCP and LCP.

In empty space, both RCP and LCP propagates with same speed. So, they have same value of

wave vector. Now, in empty space components of electric field are represented as,

For RCP :

x component :  E,, = Eycos(kz — wt)

y component : E,, = Eycos(kz — wt 4+ 7/2)
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For LCP :

x component :  E;, = Fycos(kz — wt)
y component :  Ej;, = Eycos(kz —wt —7/2)

Therefore, superposition of these RCP and LCP in empty space gives resultants as,
E, = (E..+ E;,) = 2Eycos(kz — wt)

and E,=(E.,+E,) =0

So, it is verified that the incident plane polarized light is z-polarized light.
Now, after entering into an active medium, RCP and LCP will propagate with different speed.
So, RCP and LCP will have different values of wave vectors.

The electric field components of right circularly polarized light (RCP) can be given by,
x component :  E,., = Eycos(k,.z — wt)

y component : E,, = Eycos(k.z —wt +7/2)

Electric field components of left circularly polarized (LCP) light can be given by,
x component :  E; , = Ejcos(kjz — wt)

y component : E;, = Eycos(kiz —wt —7/2)

where,
k, = wave vector magnitude of RCP light
and k; = wave vector magnitude of LCP light.
That means,
w o wn,

hy = — =

Uy c

where, v, = speed of right RCP light and n, is the refractive index of the same.
Similarly, for LCP,
woown
]{]l = — = —
(i C
where, v; = speed of right LCP light and n; is the refractive index of the same.

Now the resultant fields due superposition of LCP and RCP would give,
x component : E, = E,,+E, = Eycos(k,z —wt)+ Eycos(kiz — wt)

or,
1 1
E, = 2F;cos (5(1@ - k:l)z) oS (5(1477» + ki) — Wt)

Similarly for y component,

E, = E.,+E, = Eycos(k.z —wt+7/2)+ Eycos(kiz —wt —7/2)

or,

1 1
E, = 2E, cos (§(kr —k))z + 7r/2) coS <§(kr + k) — wt)

8
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or,
1 1
Ey = —2Esin (g(kr - k1)2> oS (§(kr + k) — wt>

Finally we have the resultant electric field due to superposition of LCP and RCP as,
1 1
x — component :  E, = 2F; cos (§(k‘r — k:l)z) cos (§(kr + k) — wt)

1 1
y —component : E, = —2Ejsin (é(k,, — kl)z> cos (é(k,, + k) — wt)

The term representing wave propagation for two components is,

1
cos (§(kr + k) — wt)

Clearly, two mutually perpendicular components share same wave propagation part without
any relative phase difference. That means the superposition of the components E, and FEj,
will give plane polarized light. Because, we have already obtained that superposition of two
mutually perpendicular vibrations without any phase difference lead to linear vibration inclined
with coordinate axes.

Suppose, ¢ is the inclination of linear vibration of resultant E field with = axis, then,

E 1
tan ¢ = E_i = —tan (5(1@ — k:l)z>

According to our consideration, the incident light was x-polarized. Therefore, rotation angle of

polarization plane in active medium is,

6= 5k~ k)2

From this expression it is obvious that polarization plane rotates continuously as the plane po-

larized light propagates through active medium along z-direction.

e The active substance is said to be dextro-rotatory or right handed if the rotation angle
¢ is +ve. That means, the rotation appears to be counterclockwise when viewed to the source
through active medium. On the other hand, active substance is said to be laevo-rotatory or left
handed if the rotation angle ¢ is —ve. That means, the rotation appears to be clockwise when

viewed to the source through active medium.

3 Faraday rotation

If a plane polarized light is propagating through a medium in presence of magnetic field along
the direction of propagation of light, then, the polarization plane of the plane polarized light gets
rotated. This phenomena is known as Faraday rotation. It was first discovered by Michael
Faraday in 1845.

Rotation angle of polarization plane is given by,

0= VHI (1)
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where, H is applied magnetic field intensity, [ is the length traveled by light in the medium in
presence of magnetic field and V' is a constant called Verdet constant. The constant V' depends
on the choice of medium. For silica, V = 2.64 x 10~* degree/Ampere.

Faraday rotation effect is used to measure very high current (~ 10° Ampere). Consider winding

of single mode optical fiber over a current carrying conductor as shown in the figure-5. Plane

X Magnetic
o oV field
Wo

Current

Figure 5: Measurement of high current by Faraday rotation measurement.

polarized light is allowed to propagate through the spiral optical fiber. The current produces
circular magnetic field lines about the conductor. Hence, the magnetic field is along the direction
of light wave propagation. So, due to Faraday rotation, polarization plane of the emergent light
will be rotated with respect to incident light. By measuring the rotation angle one can measure
the current.

Suppose, I be the current through the conductor. If H is associated magnetic field. Then, for

N number of turns of optical fiber we can write down the Ampere’s circuital law as,

]{ H-.dl=NI
N turns

Hl=NI

or,

where, [ is the total length of optical fiber winding of N turns.
Therefore, using expression (1),
0=VHI=VNI
or,
0
VN
Here, one can measure the high current using this expression.

1
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