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Preface

These are the class notes for the first-semester undergraduate students of our
college. These notes help students to acquire the basic knowledge of Number Theory.
The pre-requisitions for reading these notes are the basic knowledge in set theory.

It contains three chapters. In Chapter-I, we tried to discuss the construction of
natural numbers and integers as well as the algebraic operations, ordering properties
of them. Moreover, division algorithm, greatest integer functions are discussed briefly.

In Chapter-II, Number theoretic functions are discussed with some well-known
examples of number theoretic functions.

In Chapter-III, we introduced the idea of congruences. Also, we discussed Euler’s
Theorem, Fermat’s little theorem, Chinese remainder theorem etc. As an application
of Euler’s theorem, public-key cryptosystems (RSA model) are also briefly introduced
here.

Ramakrishna Mission Bikash Chakraborty
Vivekananda Centenary College. 08th May, 2019.
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Chapter 1

Introduction

1.1 The set of Natural numbers

The ability to count things are known to us from our childhood. That’s why
in common language, natural numbers are called counting numbers. Also, natural
numbers are seem to be the God gifted numbers.

In set theoretic notations (Zermelo-Fraenkel set theory), the natural numbers
are defined recursively by letting 0 = {} be the empty set and n + 1 = n ∪ {n} for
each n. So we can formulate a natural numbers as below:

0 = {} = ϕ,

1 = {0} = {ϕ},
2 = {0, 1} = {ϕ, {ϕ}},
3 = {0, 1, 2} = {ϕ, {ϕ}, {ϕ, {ϕ}}},

. . .

Peano’s axioms, also known as Peano’s postulates, in number theory, five axioms
introduced in 1889 by Italian mathematician Giuseppe Peano. Like the axioms for
geometry devised by Greek mathematician Euclid, the Peano’s axioms were meant
to provide a rigorous foundation for the natural numbers {0, 1, 2, 3, . . .} used in
arithmetic, number theory, and set theory. In particular, the Peano’s axioms enable
an infinite set to be generated by a finite set of symbols and rules.

We start with the axioms of Peano:
Peano’s Axioms:

1. The set N has a distinguished element which we call “1”, i.e., N 6= ϕ.

2. There exists a distinguished set map σ : N → N. The element n′ = σ(n) is
called successor of n.

3. The map σ is injective. i.e., distinct elements has distinct successors.

4. There does not exist an element n such that σ(n) = 1, i.e., σ is not a surjective
map.
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Chapter 1 Introduction

5. Let S ⊆ N such that 1 ∈ N and k ∈ S implies k + 1 ∈ S. Then S = N.

(This property is known as Principle of Mathematical Induction).

Theorem 1.1.1. If n ∈ N \ {1}. Then there exists m ∈ N such that σ(m) = n.

Proof. Let us construct the following set

S := {n ∈ N : n = 1 or, n = σ(m) for some m ∈ N}.

Then

i. 1 ∈ S.

ii. Let k ∈ S with k ≥ 2. Then there exists m ∈ N such that σ(m) = k.

Now, σ(k) = σ(σ(m)). Since, σ(m) ∈ N, so σ(k) ∈ S. Thus by Principle of
Mathematical Induction, S = N.

This completes the proof.

Algebraic operations on N
Let us define a binary operation, namely “addition” on N as follows:

i. For all n ∈ N, n+ 1 := σ(n).

ii. For n ∈ N and m ∈ N \ {1}, n+m = n+ σ(m′) := σ(n+m′).

(By Theorem 1.1.1, there exists m′ ∈ N such that σ(m′) = m. )

Example 1.1.1. We denote

1 + 1 = σ(1) := 2.

Now, using definition of addition,

1 + 2 = 1 + σ(1) = σ(1 + 1) = σ(2). We denote σ(2) := 3.

Again, by similar way,

1 + 3 = 1 + σ(2) = σ(1 + 2) = σ(3). We denote σ(3) := 4.

And, so on.

Remark 1.1.1. Thus the set of naturals can be thought as

N := {1, σ(1), σ(σ(1)), . . .},

or, in notations,
N := {1, 2, 3, 4, . . .}.
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Chapter 1 Introduction

Exercise 1.1.1. Using “principle of mathematical induction”, Show that

i. x+ y = y + x for all x, y ∈ N.

ii. x+ (y + z) = (x+ y) + z for all x, y, z ∈ N.

iii. For all x, y, z ∈ N, if x+ y = x+ z, then y = z.

Next, we define another binary operation, namely “multiplication” on N recursively
as follows:

i. For all n ∈ N, n · 1 := n.

ii. For n ∈ N and m ∈ N \ {1}, n ·m = n · σ(m′) = n+ n ·m′.
(By Theorem 1.1.1, there exists m′ ∈ N such that σ(m′) = m.)

Example 1.1.2. Clearly, n · 2 = n · σ(1) = n+ n · 1 = n+ n.
Again, n · 3 = n · σ(2) = n+ n · 2 = n+ (n+ n).

Exercise 1.1.2. Using “principle of mathematical induction”, Show that

i. For all x, y, z ∈ N, x · (y + z) = x · y + x · z.

ii. x · y = y · x for all x, y ∈ N.

ii. x · (y · z) = (x · y) · z for all x, y, z ∈ N.

Ordering properties of natural numbers

Let n,m ∈ N. We say that n is less than m, written n < m, if there exists a
k ∈ N such that m = n+ k.

We also write n ≤ m to mean that either n = m or n < m.

Exercise 1.1.3. Show that for x, y, z ∈ N,

i. x ≤ y and y ≤ x implies x = y.

ii. x ≤ y and y ≤ z implies x ≤ z.

Principle of Mathematical Induction

Let S ⊆ N such that

i. 1 ∈ S,

ii. k ∈ S ⇒ k + 1 ∈ S.

Then S = N.
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Well-ordering principle

Every non-empty subset of N has a least element, i.e., Let S 6= ϕ and S ⊆ N.
Then there exist m ∈ S such that m ≤ s for every s ∈ S.

Theorem 1.1.2. “Principle of Mathematical Induction” is equivalent to “Well-
ordering principle”.

Proof. Principle of Mathematical Induction ⇒ Well-ordering principle.
Let S 6= ϕ and S ⊆ N. Assume that S has no least element. Then 1 6∈ S. Now,

we define
T := {x ∈ N : x < s for each s ∈ S}.

Then T ∩ S = ϕ and T 6= ϕ, as 1 ∈ T .
Let p ∈ T . Then p < s for every s ∈ S. That is any element of S is greater than

or equal to p+ 1.
If p+ 1 ∈ S, then S has a least element, which is not possible. Thus p+ 1 ∈ T .
Since 1 ∈ T and p ∈ T ⇒ p+ 1 ∈ T , so by principle of mathematical induction,

T = N. Hence, S = ϕ. Thus our assumption is wrong.

Well-ordering principle ⇒ Principle of Mathematical Induction.
Let us define

T := N \ S.

If T 6= ϕ, then by well-ordering principle, T has a minimum element, say m.
Since 1 ∈ S, so 1 6∈ T . Thus m > 1, i.e., m − 1 ∈ S. Thus by the given

property of S, m = (m− 1) + 1 ∈ S, which is a contradiction. Thus T = ϕ. Hence
S = N.

Theorem 1.1.3. Let n ∈ N and P (n) be a statement. If

i. P (1) is true and

ii. P (k) is true implies P (k + 1) is true,

then P (n) is true for all n ∈ N.

Proof. Let
S = {n ∈ N : P (n) is true}.

Then

i. 1 ∈ S is true and

ii. k ∈ S is implies k + 1 ∈ S.

Thus by principle of mathematical induction, S = N. This proves that P (n) is true
for all n ∈ N.
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Example 1.1.3. Using principle of mathematical induction, show that

n < 2n for n ∈ N.

Solution:
Here the statement is

P (n) : n < 2n for n ∈ N.
Clearly, P (1) is true. Assume that P (k) is true for any natural number k. Now,

2k+1 = 2k · 2,
≥ 2 · k, since P (k) is true,

≥ k + 1.

Thus P (k + 1) is true. Hence, by principle of mathematical induction, P (n) is true
for every n ∈ N.

Exercise 1.1.4. Using principle of mathematical induction, show that

1 + 2 + 3 + . . .+ n =
n(n+ 1)

2
.

Exercise 1.1.5. Using principle of mathematical induction, show that

12 + 22 + 32 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
.

Exercise 1.1.6. Using principle of mathematical induction, show that

13 + 23 + 33 + . . .+ n3 =

(
n(n+ 1)

2

)2

.

Exercise 1.1.7. Using principle of mathematical induction, show that 32n − 8n− 1
is divisible by 64.

Theorem 1.1.4. Let n ∈ N and P (n) be a statement. Given that

i. P (n0) is true for n0 ∈ N and P (n) is false for n < n0.

ii. P (k) is true implies P (k + 1) is true for all k ≥ n0.

Then P (n) is true for all n ≥ n0.

Proof. Let
S = {n ∈ N : P (n) is true},

and
T = {n0, n0 + 1, n0 + 2, . . .}.

It is clear that S ⊆ T . If possible, let T \ S 6= ϕ. Then by well-ordering principle of
natural numbers, we have a least element of T \ S, say m.

Since n0 6∈ T \ S, so, m > n0. Thus m− 1 ≥ n0. Hence, m− 1 ∈ T .
As m is the least member of T \ S, so m− 1 6∈ T \ S. Thus m− 1 ∈ S.

Thus by the given property of S, we have m = (m − 1) + 1 ∈ S, which is
impossible. Thus S = T . This completes the proof.
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Example 1.1.4. Show that

2n < n! for n ≥ 4 and n ∈ N.

Remark 1.1.2. Here, the statement is

P (n) : 2n < n! for n ≥ 4 and n ∈ N.

Clearly, the statements P (1), P (2), and P (3) are wrong.

Solution:
Clearly, P (4) is true. Assume that P (k) is true for any natural number k ≥ 4. Now,

2k+1 = 2k · 2,
< (k!) · 2, since P (k) is true,

< (k!) · (k + 1) = (k + 1)!.

Thus P (k + 1) is true. Hence, by Theorem 1.1.4, P (n) is true for every n ∈ N and
n ≥ 4.

Theorem 1.1.5 (Principle of strong mathematical induction). Let S ⊆ N such
that

i. 1 ∈ S,

ii. For every k ∈ N, if {1, 2, 3, . . . , k} ⊆ S, then k + 1 ∈ S.

Then S = N.

Proof. Let us define
T := N \ S.

If T 6= ϕ, then by well-ordering principle, T has a minimum element, say m.
Since 1 ∈ S, so 1 6∈ T . Thus m > 1, i.e., {1, 2, 3, . . . ,m− 1} ⊆ S. Thus by the

given property of S, m = (m− 1) + 1 ∈ S, which is a contradiction. Thus T = ϕ.
Hence S = N.

Remark 1.1.3. We have already seen that “Principle of Mathematical Induction (in
short, PMI)” is equivalent to “Well-ordering principle”. Now, we have to see that
“Principle of Mathematical Induction” is equivalent to “Principle of strong Mathe-
matical Induction”.
Principle of Mathematical Induction ⇒ Principle of strong Mathematical Induction

Let S be a subset of natural numbers satisfying the hypothesis of “Principle of
strong Mathematical Induction”. Now, we construct a set

T := {n ∈ N : 1, 2, 3, . . . , n ∈ S}

Then 1 ∈ T as 1 ∈ S.
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Assume that k ∈ T . Then {1, 2, 3, . . . , k} ⊆ S. But S satisfies the hypothesis of
Principle of strong Mathematical Induction. Thus (k+ 1) ∈ S. Hence, (k+ 1) ∈ T .

Thus T satisfies the hypothesis of Principle of Mathematical Induction. Thus
T = N, i.e., S = N.
Principle of strong Mathematical Induction ⇒ Well ordering principle (hence, PMI)

Let S ⊆ N and S has no least element.
Claim: S = ϕ.
For this, we construct a set

T := N \ S.

Since S has no least element, so 1 ∈ T . Assume that {1, 2, 3, . . . , k} ⊆ T . Then
i 6∈ S for 1 ≤ i ≤ k. Thus (k + 1) 6∈ S, otherwise, it will be the least element of S.
Thus (k + 1) ∈ T .

Thus T satisfies the Principle of strong Mathematical Induction. Hence, T = N,
i.e., S = ϕ.

Example 1.1.5. Let x1 = 1, x2 = 2 and

xn+2 =
1

2
(xn + xn+1) for all n ∈ N.

Show that 1 ≤ xn ≤ 2 for all n ∈ N.

Solution:
Let

S = {n ∈ N : 1 ≤ xn ≤ 2}.

Then 1 ∈ S. Also, assume that for every k ∈ N, {1, 2, 3, . . . , k} ⊆ S.
That is, 1 ≤ xi ≤ 2 for 1 ≤ i ≤ k. Thus

1

2
(1 + 1) ≤ 1

2
(xk + xk−1) ≤

1

2
(2 + 2).

Hence 1 ≤ xk+1 ≤ 2, i.e., k + 1 ∈ S. Thus by, principle of mathematical induction,
we obtain S = N.

Exercise 1.1.8 (Backward mathematical induction). Let S ⊆ N such that

i. S is not a finite set.

ii. For every k ∈ N, k ∈ S implies k − 1 ∈ S.

Then S = N.

A fallacy!

All horses have the same color!!!!
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We prove(!!) this argument by principle of mathematical induction.
For the case n = 1, let us take any one horse from the all horses. Thus P (1) is

true.
Assume that P (k) is true, i.e, k-horses have the same colour.
Now, we take k + 1 horses {h1, h2, . . . , hk+1}. Since {h1, h2, . . . , hk} (k-horses)

have same colour and {h2, . . . , hk+1} (k-horses) have same colour, so the (k + 1)
horses {h1, h2, . . . , hk+1} have same colour, because {h2, . . . , hk+1}∩{h1, h2, . . . , hk} 6=
ϕ.

If k- horses have the same color, then k+ 1-horses will also have the same color.
Thus, by the principle of mathematical induction, in any group of horses, all horses
must be the same color.

But it is not true that all horses are of the same color, so where did we go wrong in
our induction proof?

Think!!!!: For n = 2, {h2} ∩ {h1} = ϕ. Thus P (1) ; P (2).

1.2 The set of Integers

Let us consider a set S = N × N. We define a binary relation ∼ on S with the
following rule:

(a, b) ∼ (c, d) if and only if a+ d = b+ c.

We can easily verify that ∼ is an equivalence relation on S. Thus ∼ gives a partition
on S.

Let Z be the set of all equivalence classes under this relation. Next, we define
addition and multiplication on Z as

[(a, b)] + [(c, d)] = [(a+ c, b+ d)],

[(a, b)] · [(c, d)] = [(ac, bd)].

Also, the negation (or additive inverse) of an integer is obtained by reversing the
order of the pair:

−[(a, b)] := [(b, a)].

The standard ordering on the integers is given by:

[(a, b)] < [(c, d)] if and only if a+ d < b+ c.

Example 1.2.1. 1. [(0, 0)] = [(1, 1)] = . . . = [(n, n)],

2. [(1, 0)] = [(2, 1)] = . . . = [(n+ 1, n)],

3. [(0, 1)] = [(1, 2)] = . . . = [(n, n+ 1)].

8
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Every equivalence class has a unique member that is of the form (n, 0) or (0, n)
or (0, 0). The natural number n is identified with the class [(n, 0)], and the class
[(0, n)] is denoted by the symbol −n. Thus −0 = 0.

Thus, [(a, b)] is denoted by

[(a, b)] = a− b if b ≤ a,

= b− a if a < b.

Example 1.2.2. 1. 0 = [(0, 0)] = [(1, 1)] = . . . = [(n, n)],

2. 1 = [(1, 0)] = [(2, 1)] = . . . = [(n+ 1, n)],

3. −1 = [(0, 1)] = [(1, 2)] = . . . = [(n, n+ 1)].

This notation recovers the familiar representation of the integers as {. . . ,−2,−1, 0, 1, 2, . . .}.

Absolute values of integers

Let us denote by N0 = N ∪ {0} ⊆ Z. Next, we define a map | · |: Z→ N ∪ {0}
as

| a | = a if a non-negative,

= −a if a negative.

Example 1.2.3. Let m,n ∈ Z. Then

i. | n |≥ 0. Moreover, | n |= 0 if and only if n = 0.

ii. [Symmetric Property] | m− n |=| n−m |.

iii. [Triangle Inequality] | m+ n |≤| m | + | n |.

This function is known as the absolute value.

1.3 Division algorithm

We begin this section with a statement of the Division Algorithm:

Theorem 1.3.1. Given two integers a and b with b > 0, then there exists unique
pair of integers q and r such that

a = bq + r, with 0 ≤ r < b.

9
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Proof. Let
S = {a− bx : x ∈ Z and a− bx ≥ 0}.

Then S 6= ϕ as [a− b(− | a |)] =| a | (b± 1) ∈ N ∪ {0}. Moreover, S ⊆ N ∪ {0}.
Thus by Well-Ordering principle, S has a least element, say, a− bq. Let

r = a− bq

Thus r ≥ 0. Moreover, we have to show that r < b.
If not, assume r ≥ b, then [a − b(q + 1)] = [r − b] ≥ 0 and [a − b(q + 1)] =

(a− bq)− b ≤ (a− bq), which contradicts the fact that a− bq is the least element
of S.

Thus 0 ≤ r < b.
Uniqueness part:

If possible, there exist another pair q′ and r′ such that a = bq′+ r′. Then (r− r′) =
b(q − q′) and 0 ≤ r < b, 0 ≤ r′ < b. Thus b | (| r′ − r |) and 0 ≤| r′ − r |< b.
Hence, r − r′ = 0, consequently, q′ − q = 0.

Corollary 1.3.1. Given two integers a and b with b 6= 0,then there exists unique pair
of integers q and r such that

a = bq + r, with 0 ≤ r <| b | .

Proof. Here | b |> 0. Thus we apply division algorithm for a and | b.

Definition 1.3.1. We say that q is the quotient and r is the remainder in the
division of a by b.

Definition 1.3.2. If r = 0, then we say that b divides a, or, a is divisible by b. In
this case, we write b | a.

Remark 1.3.1. We know that 0 = 0 × n, where n is any integers. Thus, if we
divide 0 by 0, we obtain any integer as a quotient. Thus the uniqueness of quotient
is violated. So, we can’t determine the quotient “exactly” when 0 is divided by 0.

Theorem 1.3.2. If a | b and a | c, then a | bx+ cy, for any integers x, y ∈ Z.

Proof. Given that b = aq and c = aq′ for some integers q, q′ ∈ Z. Then bx + cy =
a(qx+ q′y). This completes the proof.

Example 1.3.1. Prove that product of any m consecutive integers is divisible by m.

Proof. Let c, c+1, c+2, . . . , c+(m−1) be m consecutive integers. Then by Division
Algorithm, we obtain

c = qm+ r

for some integers q,m ∈ Z with 0 ≤ r < m. Thus

c+ (m− r) = m(q + 1).

Thus m | c+ (m− r). This completes the proof.

10



Chapter 1 Introduction

Definition 1.3.3. Let a, b ∈ Z, both not zero. We define the greatest common
divisor of a, b, denoted by, d = gcd(a, b) as

i. d > 0,

ii. d | a and d | b,

iii. if c | a and c | b, then c | d.

Example 1.3.2. gcd(−8, 12) = gcd(−8,−12) = gcd(8, 12) = 4.

Example 1.3.3. gcd(0, n) = n, where n ∈ Z \ {0}.

Theorem 1.3.3. Let a, b ∈ Z, both not zero. Then gcd(a, b) can be expressed as a
integer combination of a and b, i.e., there exist integers (not unique), u, v ∈ Z such
that

gcd(a, b) = au+ bv.

Proof. Since gcd(| a |, | b |) = gcd(a, b), so without loss of generality, we assume
that a ≥ 0 and b ≥ 0. Let

S = {ax+ by : x, y ∈ Z and ax+ by > 0}.

Clearly, (| a | + | b |) = {a(±1) + b(±)} ∈ S. (We choose x = 1 if a ≥ 0 and
x = −1 if a < 0. Similarly, we choose y.) Thus S 6= ϕ and S ⊆ N.

Thus by Well-ordering property, S has least element, say d. Thus there exists
integers u, v ∈ Z such that

d = au+ bv.

Claim: d = gcd{a, b}.

i. Clearly d > 0.

ii. Now, by division algorithm, we have a = dq + r, where 0 ≤ r < d.

r = a− dq
= a− (au+ bv)q

= a(1− uq) + b(−vq),

which implies r ∈ S. Since 0 ≤ r < d and d is the minimum element of S, so
r = 0. Thus d | a. Similarly, we can check that d | b.

iii. If c | a and c | b, then c | au+ bv = d (by Theorem 1.3.2).

Thus d = gcd(a, b).

Remark 1.3.2. Let a = 12, b = 18, u = 3 and v = −2. Here, au + bv = 0, but 0
is not the gcd(a, b).

Thus the converse part of Theorem 1.3.3 is not true always.

11
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Theorem 1.3.4. Let a, b ∈ Z , both not zero. Then gcd(a, b) = 1 if and only if
there exist integers (not unique), u, v ∈ Z such that

au+ bv = 1.

Proof. If gcd(a, b) = 1, then by Theorem 1.3.3, there exist integers (not unique),
u, v ∈ Z such that au+ bv = 1.

Next, we assume that there exist integers (not unique), u, v ∈ Z such that
au+ bv = 1. Now, our claim is to show that gcd(a, b) = 1.

Let gcd(a, b) = d, then d | a and d | b. Thus d | au+ bv, i.e., d | 1. Since d > 0,
so d = 1.

Theorem 1.3.5. Let a, b ∈ Z \ {0} such that a = bq + r for some integers q and r
with 0 ≤ r <| b |. Then gcd(a, b) = gcd(b, r).

Proof. Let d = gcd(a, b) and d′ = gcd(b, r). Then d | a and d | b. Thus d |
(a− bq) = r. As d | r and d | b, so d | d′. Similarly, we can check that d′ | d. Thus
d = d′, as d, d′ is positive.

Euclidean algorithm

The Theorem 1.3.5 help us to find the gcd of two (hence finite) given numbers.
This process is known as the Euclidean algorithm.

Theorem 1.3.6 (Euclidean algorithm). Given two positive integers a and b with
b - a. Let a = r0 and b = r1 and applying the division algorithm repeatedly to obtain
a set of remainders defined successively by the relations

r0 = r1q1 + r2, 0 < r2 < r1,

r1 = r2q2 + r3, 0 < r3 < r2,
...

rn−2 = rn−1qn−1 + rn, 0 < rn < rn−1,

rn−1 = rnqn + rn+1, rn+1 = 0.

Then gcd{a, b} = rn.

Proof. Division algorithm ensures that the sequence of non-negative real numbers
{rn} exists and strictly decreasing. Since rn ≥ 0 and strictly decreasing, so there
exist a stage where rn+1 = 0.

Thus applying the Theorem 1.3.5, we obtain,

gcd{a, b} = gcd{r0, r1} = gcd{r1, r2} = . . . = gcd{rn−2, rn−1} = gcd{rn−1, rn} = rn

Example 1.3.4. Find gcd{15, 40}.
12
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Solution:
By division algorithm, we have

40 = 2× 15 + 10,

15 = 1× 10 + 5,

10 = 2× 5 + 0.

Thus gcd{15, 40} = 5.
Again,

5 = 15− 1× 10,

= 15− 1× (40− 2× 15),

= 3× 15− 1× 40.

Thus gcd{15, 40} = 15u+ 40v, where u = 3 and v = −1.

Exercise 1.3.1. Find the integers u and v satisfying

20u+ 37v = 1.

Exercise 1.3.2. Find gcd{250, 39}.

Exercise 1.3.3. Show that gcd{a, a+ 2} = 1, or, 2 where n ∈ N.

1.4 Prime numbers

An integer p(> 1) is said to be a prime number if its only positive divisors are
1 and p.

An integer which is not a prime number is called a composite number.

Remark 1.4.1. The number 1 is regarded as neither prime nor composite.

Theorem 1.4.1. Every integer n > 1 is either prime or a product of prime numbers.

Proof. Let

S = {n ∈ N : n > 1 and n has no prime divisor}.

If S = ϕ, then there is nothing to prove. So, we assume that S 6= ϕ. Since S ⊆ N,
so by Well-Ordering principle, S has a least element, say m. Thus m > 1. Since,
m ∈ S, so m is not prime. Hence m is a composite number. Thus it has a positive
divisor other than 1 and m, say d. Then 1 < d < m.Now we consider two cases:
Case:-I

If d is a prime, then m has a prime divisor, a contradiction.
Case:-II

If d is not a prime, then d ∈ S. which contradicts that m is the least element of
S.

Thus S = ϕ, i.e., every integer n > 1 is either prime or has a prime divisors.

13
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Theorem 1.4.2. Let p be a prime number and a be an integer with 1 ≤ a < p, then

gcd{a, p} = 1.

Proof. Left as an exercise.

Theorem 1.4.3. Let p be a prime number and a be an integer with a ≥ p, then
either p | a, or gcd{a, p} = 1.

Proof. Left as an exercise.

Theorem 1.4.4. Let p be a prime number and a, b be two integers with p | ab, then
either p | a, or p | b.

Proof. Given that p | ab. That is ab = kp, for some integer k.
If p - a, then gcd{p, a} = 1. Thus there exists integers u and v such that

pu+ va = 1.
Now, b = p(bu) + v(ab) = p(bu) + p(kv), i.e, p | b.

Theorem 1.4.5 (Euclid’s Theorem). The number of primes are infinite.

Proof. On contrary, we assume that there are only finitely many primes, say p1, p2, p3, . . . , pk.
Let

N = 1 + p1 · p2 · p3 · . . . · pk.

Then N > pi for all i. Now, we consider two cases:
Case:-I

If N is a prime, then N is new prime as N > pi for all i. Thus the list of primes
p1, p2, p3, . . . , pk is incomplete, a contradiction.
Case:-II

If N is a composite number, then by Theorem 1.4.1, it must have a prime factor.
Since pi | (N − 1), so pi - N . Thus the prime factor is not in the list of primes
p1, p2, p3, . . . , pk. So, the list is again incomplete, which is again contradiction.

Thus the number of primes are infinite.

We know that the sum
∑
n∈N

1
n

diverges. Now, we take the sum of reciprocals of

all primes and see that the sum again diverges.

Theorem 1.4.6 (Euler). The infinite series
∞∑
n=1

1
pn

diverges.

Proof. See ([1])

Next we state fundamental theorem of arithmetic without proof.

Theorem 1.4.7 (Fundamental theorem of arithmetic ). Every integer n > 1 can be
represented as a product of prime factors in only one way, apart from the order of
the factors.

14
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That is, if the prime factors of n are p1, p2, . . . , pr and if pi occurs as a factor ai
times, then

n = pa11 p
a2
2 . . . parr .

[This form is known as canonical form.]

Exercise 1.4.1. Show that if 2n − 1 is prime, then n is prime.

Exercise 1.4.2. Show that if 2n + 1 is prime, then n is a power of 2.

Exercise 1.4.3. Show that n4 + 4 is composite if n > 1.

1.5 Greatest integer function

Let x be any real number, then by Archimedean property, there exists an integer
n such that

n ≤ x < n+ 1.

Thus x can be expressed as
x = n+ f,

where 0 ≤ f < 1. The “integral part of x” is denoted by [x] and “fractional part
of x” is denoted by {x}. Thus the fractional part is the sawtooth function and a
periodic function with period 1.

Example 1.5.1. i. If x = 3.4, then [x] = 3 and {x} = 0.4.

ii. If x = 0.4, then [x] = 0 and {x} = 0.4.

iii. If x = −0.4, then x = −1 + 0.6, i.e., [x] = −1 and {x} = 0.6.

iv. If x = −3.4, then x = −4 + 0.6, i.e., [x] = −4 and {x} = 0.6.

Example 1.5.2. i. If −2 ≤ x < −1, then [x] = −2.

ii. If −1 ≤ x < 0, then [x] = −1.

iii. If 0 ≤ x < 1, then [x] = 0.

15
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iv. If 1 ≤ x < 2, then [x] = 1.

Remark 1.5.1. For two real numbers, x and y,

[x+ y] ≥ [x] + [y].

Solution:
Let x = n1 + f1 and y = n2 + f2, where 0 ≤ f1, f2 < 1. Thus [x] + [y] = n1 + n2,
but [x + y] ≥ n1 + n2 as f1 + f2 may be greater than 1. Thus equality occurs if
0 ≤ f1 + f2 < 1 and [x] + [y] + 1 = [x+ y] if 1 ≤ f1 + f2 < 2.

Definition 1.5.1. Let p be a prime and x ∈ Z, x 6= 0. The p-adic valuation of x,
denoted by vp(x) is defined as the largest non-negative integer e such that pe divides
x. In other words, vp(x) is the exact exponent of p in the prime factorization of x.

Also, by definition, vp(0) = +∞.

Theorem 1.5.1 (Legendre’s theorem). The largest exponent e of a prime p such
that pe | n! is given by

e = vp(n!) =

[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ . . .

Remark 1.5.2. We have seen that the formula on the right side is an infinite sum,
but for any particular values of n and p, it has only finitely many nonzero terms.
Because, for every i large enough that pi > n, one has [ n

pi
] = 0.

Proof of the Legendre’s theorem: Given

n! = 1 · 2 · 3 · . . . · n.

Let p, 2p, 3p, . . . ,mp are the all positive integral multiple of p not exceeding n. Then

mp ≤ n < (m + 1)p, i.e., [n
p
] = m. Thus there are

[
n
p

]
integers below n that

contribute a factor of p.

Out of these
[
n
p

]
integers,

[
n
p2

]
contribute a second factor; and among those [ n

p3
]

contribute a third factor p, and so on.
Thus the total number of times p divides n! is

e = vp(n!) =

[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ . . . .

Example 1.5.3. Find the highest power of 3 contained in 20!.

Solution:
There are [20

3
] = 6 integers, namely, 3, 6, 9, 12, 15, 18 which are divisible by 3.

Out of these 6 integers, [20
32

] = 2 integers, namely, 9, 18 which are divisible by 32.
Out of these integers, [20

33
] = 0 integers which are divisible by 33.

Thus the highest power of 3 contained in 20! is 6 + 2 + 0 = 8.
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Example 1.5.4. Show that vp(n!) = n−1
p−1 , where n = pr.

Solution:

vp(n!) =

[
n

p

]
+

[
n

p2

]
+ . . .+

[
n

pr−1

]
+

[
n

pr

]
= pr−1 + pr−2 + . . .+ p+ 1

=
pr − 1

p− 1

=
n− 1

p− 1
.

Example 1.5.5. The product of n consecutive positive integers is divisible by n!.

Solution:
Let the product be

(m+ 1)(m+ 2) . . . (m+ n) =
(m+ n)!

m!
.

Claim: (m+n)!
m!n!

is an integer.
Let p be any prime factor of m!n!. Then p must be a factor of (m+ n)!.
Let r, s and t be the largest exponents of the prime p in m!, n! and (m + n)!

respectively. Now using the fact that [x+ y] ≥ [x] + [y], we have

t =

[
m+ n

p

]
+

[
m+ n

p2

]
+

[
m+ n

p3

]
+ . . . ,

≥
([

m

p

]
+

[
n

p

])
+

([
m

p2

]
+

[
n

p2

])
+

([
m

p3

]
+

[
n

p3

])
. . . ,

= r + s.

Thus m!n! must be a divisor of (m+ n)!. Hence the proof.

Exercise 1.5.1. For a real number x

[x] + [−x] = 0, if x is an integer

= −1, otherwise.

Exercise 1.5.2. For a real number x

[x] + [x+
1

2
] = [2x].

Exercise 1.5.3. For a real number x

[x] +

[
x+

1

3

]
+

[
x+

2

3

]
= [3x].

Exercise 1.5.4. Find the highest power of 5 contained in 140!.

Exercise 1.5.5. Show that 6 | n(n+ 1)(n+ 2) where ∈ Z.

Exercise 1.5.6. If n > 1, then show that the sum
n∑
k=1

1
k

is not an integer.
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Number theoretic functions

2.1 Introduction

The fundamental theorem of arithmetic tells us that “every integer n > 1
can be expressed as a product of prime factors in only one way, apart from the order
of the factors.”

If the distinct prime factors of n are p1, p2, . . . pr and if pi occurs as a factor ai
times, then

n = pa11 p
a2
2 . . . parr .

Definition 2.1.1. A function f : N → Φ, where Φ ⊆ R, or Φ ⊆ C, is called a
number theoretic function, i.e., the domain of the function is the set of natural
numbers.

A number theoretic function f is called multiplicative if it is not identically zero
and if

f(mn) = f(m)f(n) where gcd{m,n} = 1.

A multiplicative function f is called completely multiplicative if

f(mn) = f(m)f(n) for all m,n.

Example 2.1.1. Let fα = nα, where α is a fixed real or complex number. Clearly
fα is a completely multiplicative function.

2.2 The Möbius function µ(n)

Definition 2.2.1. The Möbius function µ : N→ R is defined as follows:

µ(n) = 1 if n = 1,

= (−1)r if a1 = a2 = . . . = ar = 1,

= 0 otherwise

18
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Definition 2.2.2. The identity function I(n) is defined as

I(n) =

[
1

n

]
= 1 if n = 1,

= 0 if n > 1.

Theorem 2.2.1. If n ≥ 1, then
∑
d|n
µ(d) = I(n).

Proof. For n = 1, the result is true. Let n > 1 and n = pa11 p
a2
2 . . . parr . If d is factor

of n and p2i | d, then µ(d) = 0. Thus∑
d|n

µ(d)

= µ(1) +
r∑
i=1

µ(pi) +
∑

µ(pipj) +
∑

µ(pipjpk) + . . .+ µ(p1p2 . . . pk)

= 1 +

(
k

1

)
(−1)k +

(
k

2

)
(−1)2 + . . .+

(
k

k

)
(−1)k

= (1− 1)k

= 0.

2.3 The Euler totient function ϕ(n)

Definition 2.3.1. The Euler totient function ϕ : N→ R is defined to be the number
of positive integers not exceeding n which are relatively prime to n.

Now, we state the relationship between the Möbius function µ(n) and the Euler
totient function ϕ(n) without proof:

Theorem 2.3.1. If n ≥ 1, we have

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Theorem 2.3.2. If n ≥ 1, then

ϕ(n) = n
∏
p|n

(1− 1

p
).

Proof. For n = 1, there is nothing prove. Let n > 1 and p1, p2, . . . , pr be the distinct
prime divisors of n. Now, if d is a divisor of n, then d can expressed as product of
some primes pi for 1 ≤ i ≤ r, and

µ(d) = 0 if p2i | d for some i,

= ±1, otherwise.
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Now,∏
p|n

(1− 1

p
) =

r∏
i=1

(1− 1

pi
)

= 1−
∑ 1

pi
+
∑ 1

pipj
−
∑ 1

pipjpk
+ . . .+

∑ (−1)r

p1p2 . . . pr

=
1

1
+
∑ (−1)

pi
+
∑ (−1)2

pipj
+
∑ (−1)3

pipjpk
+ . . .+

∑ (−1)r

p1p2 . . . pr

=
∑
d|n

µ(d)

d

=
ϕ(n)

n
, by Theorem 2.3.1.

This completes the proof.

Theorem 2.3.3. If m,n ∈ N and gcd{m,n} = 1, then ϕ(mn) = ϕ(m)ϕ(n).

Proof. Let m = pa11 p
a2
2 . . . parr and n = qb11 q

b2
2 . . . qbss . Since gcd{m,n} = 1, so

mn = pa11 p
a2
2 . . . parr q

b1
1 q

b2
2 . . . qbss , gcd{pi, qj} = 1.

Now, the result follows from Theorem 2.3.2.

Remark 2.3.1. Thus the Euler totient function ϕ(n) is multiplicative, but not com-
pletely multiplicative, as ϕ(8) 6= ϕ(2)ϕ(4).

Theorem 2.3.4. If p be a prime and k be natural number, then

ϕ(pk) = pk − pk−1.

Proof. The proof follows from Theorem 2.3.2. But, here we give another tricky proof.
Clearly, ϕ(pk) counts those natural numbers which are ≤ pk and prime to pk, i.e,

ϕ(pk) counts those natural numbers which are ≤ pk and not of the form t · p, where
p ≤ t · p ≤ pk, (i.e., 1 ≤ t ≤ pk−1). Thus

ϕ(pk) = pk − pk−1.

Theorem 2.3.5. ϕ(n) is even for n ≥ 3.

Proof. If n = 2p with p ≥ 2, then ϕ(n) = 2p−1, which is even.
If n has at least one odd prime factor, then n can be written as n = pαq with

gcd{p, q} = 1. Then ϕ(n) = ϕ(pα)ϕ(q) = pα−1(p− 1)ϕ(q), which is even.

Theorem 2.3.6. Let n ≥ 2. Then the sum of all positive integers less than n and
prime to n is 1

2
nϕ(n).
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Proof. Let those integers be
a1, a2, . . . , aϕ(n).

Claim: If gcd{b, n} = 1, then gcd{b, n− b} = 1.
If gcd{b, n} = 1, then there exists integers u, v such that ub + nv = 1, i.e,

(u+ v)b+ v(n− b) = 1. Thus gcd{b, n− b} = 1.
Hence, n− a1, n− a2, . . . , n− aϕ(n) are the complete list of integers less than n

and prime to n. Thus

S = a1 + a2 + . . .+ aϕ(n)

= (n− a1) + (n− a2) + . . .+ (n− aϕ(n))
= nϕ(n)− S.

Thus S = 1
2
nϕ(n).

Exercise 2.3.1. Let n ≥ 2. Then the average of all positive integers less than n and
prime to n is n

2
.

2.4 The Dirichlet product

Definition 2.4.1. Let f and g be two number theoretic functions. We define the
Dirichlet product of them as a new number theoretic function h as follows:

h(n) =
∑
d|n

f(d)g(
n

d
).

We write f ∗ g for h.

Remark 2.4.1. We have seen in Theorem 2.3.1, that

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Thus ϕ = µ ∗N , where N is defined as N(n) = n for all n ∈ N.

Theorem 2.4.1 (Commutative Law). For any two number theoretic functions f and
g, we have

f ∗ g = g ∗ f.

Proof. (f ∗ g)(n) =
∑
d|n
f(d)g(n

d
) =

∑
d′|n

f( n
d′

)g(d′) = (g ∗ f)(n).

Theorem 2.4.2 (Associative Law). For any three number theoretic functions f , g
and k, we have

f ∗ (g ∗ k) = (f ∗ g) ∗ k.
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Proof. Let f ∗ g = B. Then

(B ∗ k)(n) =
∑
dd′=n

B(d)k(d′)

=
∑
dd′=n

( ∑
d1d2=d

f(d1)g(d2)

)
k(d′)

=
∑

d1d2d′=n

f(d1)g(d2)k(d′).

Similarly, we can compute f ∗ (g ∗ k)(n) and observe the associativity of Dirichlet
product.

Theorem 2.4.3 (Existence of identity element). For any number theoretic function
f , we have

f ∗ I = I ∗ f = f.

Proof. Clearly, (f ∗ I)(n) =
∑
d|n
f(d)I(n

d
) = f(n)I(1) = f(n).

This completes the proof.

Theorem 2.4.4. If f is a number theoretic function withf(1) 6= 0, then there exist
a unique number theoretic function f−1, called the Dirichlet inverse of f , such that

f ∗ f−1 = f−1 ∗ f = I.

Proof. Since Dirichlet product is commutative, so we shall prove that (f ∗f−1)(n) =
I(n) has unique solution for the function values f−1(n). We will establish this by
mathematical induction.

For n = 1, we obtain f(1)f−1(1) = 1. As f(1) 6= 0, so f−1(1) = 1
f(1)

.

Next we assume that f−1(k) can be determined for all k < n. Now,∑
d|n

f(
n

d
)f−1(d) = I(n),

gives

f(1)f−1(n) +
∑

d|n,d<n

f(
n

d
)f−1(d) = I(n) = 0,

Since all the values of f−1(d) for d | n, d < n are known and f(1) 6= 0, so we can
determine f−1(n).

Remark 2.4.2. Thus f−1 is given by

f−1(1) =
1

f(1)
, f−1(n) =

−1

f(1)

∑
d|n,d<n

f(
n

d
)f−1(d) for n > 1.
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Remark 2.4.3. The set of all number theoretic functions f with f(1) 6= 0 forms an
abelian group with respect to the binary operation ∗.

Theorem 2.4.5 (Möbius inversion formula). The equation

f(n) =
∑
d|n

g(d)

gives

g(n) =
∑
d|n

f(d)µ(
n

d
).

Proof. Let us first define unit function u(n) as

u(n) = 1 for all n.

Given that f = g ∗ u. Also, from Theorem 2.2.1, we obtain
∑
d|n
µ(d) = I(n), i.e.,

µ ∗ u = I.
Now,

g = g ∗ I
= g ∗ (µ ∗ u)

= g ∗ (u ∗ µ)

= (g ∗ u) ∗ µ)

= f ∗ µ.

This completes the proof.

Theorem 2.4.6 (Converse part of Möbius inversion formula). If

g(n) =
∑
d|n

f(d)µ(
n

d
),

then
f(n) =

∑
d|n

g(d).

Proof. Given that g = f ∗ µ. Also, from Theorem 2.2.1, we obtain
∑
d|n
µ(d) = I(n),

i.e., µ ∗ u = I.
Now,

f = f ∗ I
= f ∗ (µ ∗ u)

= (f ∗ µ) ∗ u
= g ∗ u.

This completes the proof.
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Exercise 2.4.1. For any positive integer n, show that∑
d|n

ϕ(d) = n.

Exercise 2.4.2. Using Möbius inversion formula, show that

ϕ(n) =
∑
d|n

dµ(
n

d
).

Exercise 2.4.3. If f and g be two number theoretic functions with f(1) 6= 0 and
g(1) 6= 0, then

(f ∗ g)−1 = f−1 ∗ g−1.

Theorem 2.4.7. If f and g are multiplicative, then their Dirichlet product f ∗ g is
also multiplicative.

Proof. Let h = f ∗ g and m,n ∈ N with gcd{m,n} = 1. If c | mn, then there exist
a, b such that c = ab and a | m, b | n. Also, gcd{a, b} = 1. Now,

h(mn) =
∑
c|mn

f(c)g(
mn

c
)

=
∑
a|m,b|n

f(ab)g(
mn

ab
)

=
∑
a|m,b|n

f(a)f(b)g(
m

a
)g(

n

b
)

=
∑
a|m

f(a)g(
m

a
)
∑
b|n

f(b)g(
n

b
)

= h(m)h(n).

This completes the proof.

2.5 The divisor functions σα(n)

Definition 2.5.1. For real or complex number α and any integer n ≥ 1, we define

σα(n) =
∑
d|n

dα.

This function is known as divisor function.

Theorem 2.5.1. The divisor function σα(n) is multiplicative.
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Proof. Let us first define unit function u(n) as

u(n) = 1 for all n.

Clearly, u(n) is multiplicative function. Also,

σα(n) =
∑
d|n

dα = u ∗Nα.

Since Dirichlet product of two multiplicative functions is multiplicative, so the divisor
function σα(n) is multiplicative.

Example 2.5.1. Compute σα(pa), where a ≥ 0 and p is a prime.

Solution:
Since the positive divisors of pa are 1, p, p2, . . . , pa, so

σα(pa) = 1a + pa + p2a + . . .+ paα =
pα(a+1)−1

pα − 1
if α 6= 0

= a+ 1 if α = 0.

Example 2.5.2. Compute σα(n), where n ≥ 1.

Solution:
If the distinct prime factors of n are p1, p2, . . . pr and if pi occurs as a factor ai times,
then

n = pa11 p
a2
2 . . . parr .

Since the divisor function σα(n is multiplicative, so

σα(n) = σα(pa11 )σα(pa22 ) . . . σα(parr ).

Rest part is left as an exercise for the reader.

Definition 2.5.2. If α = 0, then σ0(n) is the number of divisors of n, and this is
denoted by τ(n).

Definition 2.5.3. If α = 1, then σ1(n) is the sum of divisors of n, and this is denoted
by σ(n).

Theorem 2.5.2. If n = pa11 p
a2
2 . . . parr , then τ(n) = (1 + a1)(1 + a2) . . . (1 + ar).

Theorem 2.5.3. If n = pa11 p
a2
2 . . . parr , then

σ(n) =
pa1+1
1 − 1

p1 − 1
· p

a2+1
2 − 1

p2 − 1
· · · · · p

ar+1
r − 1

pr − 1
.

Example 2.5.3. Show that the product of all positive divisors of a positive integer

n > 1 is n
τ(n)
2 .
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Solution:
If d is a positive integer of n, then there exist a positive integer d′ such that dd′ = n.
Now

nτ(n) =
∏
d|n

n

=
∏
d|n

dd′

=
∏
d|n

d
∏
d′|n

d′

= (
∏
d|n

d)2.

Thus
∏
d|n
d = n

τ(n)
2 .

Exercise 2.5.1. Show that τ(n) is a odd number if and only if n is a perfect square.

Exercise 2.5.2. If d1, d2, . . . , dk be the list of all positive divisors of n, then

1

d1
+

1

d2
+ . . .+

1

dk
= 2.

Definition 2.5.4. A positive integer n is said to be a perfect number if σ(2n) = 2n.

If n is a perfect number and n = pa11 p
a2
2 . . . parr , then

2n

= (1 + p1 + . . .+ pa11 ) · (1 + p2 + . . .+ pa22 ) · . . . · (1 + pr + . . .+ parr )

=
∑

i1,i2,...,ir

pi11 p
i2
2 . . . p

ir
r , where 0 ≤ i1 ≤ a1, . . . , 0 ≤ ir ≤ ar

Thus

n

= 2n− pa11 pa22 . . . parr

=

( ∑
i1,i2,...,ir

pi11 p
i2
2 . . . p

ir
r

)
− pa11 pa22 . . . parr

That is, n is the sum of all positive divisors excluding itself.
The first perfect number is 6, as 1 + 2 + 3 = 6. The next perfect number is 28,

as 28 = 1 + 2 + 4 + 7 + 14.

Exercise 2.5.3. If n be an odd positive integer, then

ϕ(2n) = ϕ(n).
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Exercise 2.5.4. If n be an even positive integer, then

ϕ(2n) = 2ϕ(n).

Exercise 2.5.5. If n be the product of two successive odd primes, then

ϕ(n)σ(n) = (n+ 1)(n− 3).

Exercise 2.5.6. Let k > 1 be¡ a integer. If 2k − 1 is a prime, then 2k−1(2k − 1) is
a perfect number.
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Congruences

3.1 Introduction

Gauss introduced the notation of Congruence. Congruence is an equivalence
relation on the set of integers.

Definition 3.1.1. Let a, b ∈ Z and m be a natural number. By “a is congruent to b modulo m”,
we mean that m | a− b. In this case, we write a ≡ b (mod m) or, a ≡m b.

Example 3.1.1. Let n ∈ N.

i) n is even if and only if n ≡ 0 (mod 2).

ii) n is odd if and only if n ≡ 1 (mod 2).

Theorem 3.1.1. Congruence is an equivalence relation on Z.

Proof. Let a, b ∈ Z and m ∈ N. Let us define a relation ≡m on Z by a ≡m b if and
only if m | a− b.

Then ≡m is reflexive as m | a− a.
Let a ≡m b holds. Then m | a − b, i.e., m | b − a. Thus b ≡m a holds. So ≡m

is symmetric.
Now let a ≡m b and b ≡m c hold for some integers a, b, c ∈ Z. Then m | a − b

and m | b− c. That is, m | (a− b) + (b− c). So, ≡m is transitive.
Thus “≡m” is an equivalence relation on Z.

Theorem 3.1.2. If a ≡ b (mod m) and α ≡ β (mod m), then

i) ax+ αy ≡ bx+ βy (mod m) for all integers x and y.

ii) aα ≡ bβ (mod m).

iii) an ≡ bn (mod m) for all natural number n.

iv) f(a) ≡ f(b) (mod m) for every polynomial f with integer coefficients.

28



Chapter 3 Congruences

Proof. i) Since m | (a − b) and m | (α − β), so for any two integers x and y,
m | x(a− b) + y(α− β). Thus ax+ αy ≡ bx+ βy (mod m) for all integers
x and y.

ii) Putting x = α and y = b in (i), we have aα ≡ bβ (mod m).

iii) Let P (n) be a statement that an ≡ bn (mod m) for all natural number n.

It is given that P (1) is true. Assume that P (k) is true for a positive integer
k ≥ 1. Thus a ≡ b (mod m) and ak ≡ bk (mod m). Thus by (ii),
ak+1 ≡ bk+1 (mod m), i.e., P (k + 1) is true. So by mathematical induction,
the claim is true.

iv) Let f(x) = a0 + a1x + a2x
2 + . . . + alx

l be a polynomial of degree l with
integer coefficients. Then by (ii) and (iii), we have

a0 ≡ a0 (mod m),

a1a ≡ a1b (mod m),

a2a
2 ≡ a2b

2 (mod m),

. . . . . . . . .

al−1a
l−1 ≡ al−1b

l−1 (mod m),

ala
l ≡ alb

l (mod m).

Now applying (i), we have f(a) ≡ f(b) (mod m) .

Example 3.1.2. The numbers of the form Fn = 22n are called Fermat’s Numbers.
It is easy to check that F0, F1, F2, F3 and F4 are primes. Moreover, Fermat thought
that Fn is prime for every n ∈ N, but, in 1732, Euler found that F5 is composite.

Since 216 = 65536 ≡ 154 (mod 641), so

232 ≡ (154)2 (mod 641)

≡ 23716 (mod 641)

≡ 640 (mod 641)

≡ −1 (mod 641).

That is, 641 | F5.

Example 3.1.3. Let

n = am(10)m + am−1(10)m−1 + . . .+ a2(10)2 + a1(10)1 + a0,

where 0 ≤ ai ≤ 9. Let
S = a0 + a1 + . . .+ am.

Show that
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i. 2 | n if and only if 2 | a0.

ii. 9 | n if and only if 9 | S.

Solutions:
Let f(x) = amx

m + am−1x
m−1 + . . .+ a0 be a polynomial with integer coefficients.

i. Now,

10 ≡ 0 (mod 2)

i.e., f(10) = f(0) (mod 2)

i.e., n = a0 (mod 2)

Thus 2 | (n− a0). Hence, 2 | n if and only if 2 | a0.

ii. Again,

10 ≡ 1 (mod 9)

i.e., f(10) = f(1) (mod 9)

i.e., n = S (mod 9)

Thus 9 | (n− S). Hence, 9 | n if and only if 9 | S.

Exercise 3.1.1. Let

n = am(1000)m + am−1(1000)m−1 + . . .+ a2(1000)2 + a1(1000)1 + a0,

where 0 ≤ ai ≤ 9. Let

T = a0 − a1 + . . .+ (−1)mam.

Show that

i. 7 | n if and only if 7 | T .

ii. 11 | n if and only if 11 | T .

iii. 13 | n if and only if 13 | T
Example 3.1.4. Show that 17 | (23n+1 + 3 · 52n+1) for every natural number n.
Solutions:
Clearly,

23n+1 + 3 · 52n+1

= 2 · 8n + 15 · 25n

And,

25 ≡ 8 (mod 17)

So, 25n = 8n (mod 17)

i.e., 15 · (25)n = 15 · (8)n (mod 17)

i.e., 15 · (25)n = (−2) · (8)n (mod 17).

Thus 17 | (23n+1 + 3 · 52n+1) for every natural number n.
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Exercise 3.1.2. Show that 3(4n+1 − 1) is divisible by 9.

Theorem 3.1.3 (Wilson’s Theorem). If p be a prime, then p | (p− 1)! + 1.

Proof. First we show that 1 and p−1 are only elements which has self-inverse in Zp.
Let 1 ≤ a ≤ p− 1 and a2 ≡ 1 (mod p). Then

p | a− 1, or, p | a+ 1.

Since 0 ≤ a− 1 ≤ p− 2 and 2 ≤ a+ 1 ≤ p, so a = 1 or, a = p− 1.
Next, we show that every element b ∈ {2, . . . , p− 2} has unique inverse mod p

in {2, . . . , p− 2}.
Since gcd{b, p} = 1, then there exists integers u and v such that

bu+ pv = 1.

Again, by division algorithm, there exist integers t and c such that

u = pt+ c, 0 ≤ c ≤ p− 1.

Since gcd{b, p} = 1, so c 6= 0. Now, bc + p(bt + v) = 1, i.e., bc ≡ 1 (mod p).
Also, c 6= 1, p− 1, as 1, p− 1 are self inverse elements (mod p).

Thus c is the inverse element of b with respect to (mod p).
Now we have to show that each b ∈ {2, . . . , p−2} has unique inverse with respect

to (mod p). If not, assume that bc ≡ 1 (mod p) and bc′ ≡ 1 (mod p) for some
c, c′ ∈ {2, 3, . . . , p− 2}. Then

b(c− c′) ≡ 0 (mod p).

But gcd{b, p} = 1 and 0 ≤| c− c′ |< p, so p | (c− c′), so c = c′.
From the above discussion, it is clear that

2 · 3 · ·4 · . . . · (p− 2) ≡ 1 (mod p),

i.e., (p− 2)! ≡ 1 (mod p),

i.e., (p− 1)! ≡ 1× (p− 1) (mod p),

i.e., (p− 1)! + 1 ≡ (p− 1) + 1 (mod p),

i.e., (p− 1)! + 1 ≡ p (mod p),

i.e., (p− 1)! + 1 ≡ 0 (mod p).

Next, we show that the converse part of the Wilson’s Theorem is also true.

Theorem 3.1.4. Let n(> 1) be a natural number such that n | (n− 1)! + 1. Then
n is a prime number.
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Proof. For a contradiction, we assume that n = uv and 1 � u, v � n. Since u | n
and n | (n− 1)! + 1, so

u | (n− 1)! + 1. (3.1.1)

As (n− 1)! = 1 · 2 · 3 · . . . · u · . . . · (n− 1), so

u | (n− 1)!. (3.1.2)

Thus from equations (3.1.1) and (3.1.2), we obtain u | 1, i.e., u = 1, a contradiction.
Thus n must be a prime.

Example 3.1.5. Find the remainder of 97! when divided by 101.

Solution:
First we will apply Wilson’s theorem to note that 100! ≡ −1 (mod 101). When we
decompose the factorial, we get that

(100)(99)(98)(97!) ≡ −1(mod 101).

Now, we note that 100 ≡ −1( mod 101), 99 ≡ −2 (mod 101), and 98 ≡ −3( mod 101).
Hence

(−1)(−2)(−3)(97!) ≡ −1(mod 101).

Now, we want to the inverse of 6 in (mod101). Using the division algorithm, we get
that

101 = 6(16) + 5,

6 = 5(1) + 1,

5 = 5(1) + 0.

Thus 1 = 6 + [101 + 6(−16)](−1), i.e., 1 = 101(−1) + 6(17). Hence, 17 can be
used as an inverse for 6 (mod 101). Thus

6(97!) ≡ 1(mod 101),

(17)(6)(97!) ≡ (17)1 (mod 101),

97! ≡ 17 (mod 101)

Hence, 97! has a remainder of 17 when divided by 101.

Exercise 3.1.3. Find the remainder of 67! when divided by 71.
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3.2 Residue classes

Let a, b ∈ Z and m be a natural number. We have already defined a congruent
relation on Z by a is related to b if and only if “a is congruent to b modulo m”.
Since this relation is an equivalence relation on Z, so it gives a partition on Z. Each
“equivalence classes” are known as Residue classes.

Definition 3.2.1. Let a ∈ Z and m be a natural number. Then Residue class of
a modulo m is denoed by a and defined by

a := {x : x ≡ a (mod m)}.

That is, x = a+ qm, for some q ∈ Z

Example 3.2.1. Let n ∈ Z. Then by Division Algorithm, n = 5q + r, where q ∈ Z
and r = 0, 1, . . . , 4. Thus 0 contains all those integers which are divisible by 5.
Similarly, 1 contains all those integers which gives remainder one after division by 5.
and so on.

Thus Z = 0 ∪ 1 ∪ . . . ∪ 4.
Also, we observed that if x ∈ 3, then x gives remainder 3 when it is divided by

5, i.e, 5 | (x− 3), i.e., x ≡ 3 (mod 5).

Now, the following results are immediate from the discussion of elementary set
theory.

Theorem 3.2.1. Let a, b ∈ Z and m be a natural number.

i. a = b if and only if a ≡ b (mod m).

ii. Two integers x and y are in same residue class if and only if x ≡ y (mod m).

iii. The m residue classes 1, 2, . . . ,m are disjoint and their union is Z.

Proof. Proofs are left as exercises.

Exercise 3.2.1. Let a, b ∈ Z and m be a natural number. We denote by Zm :=
{1, 2, . . . ,m} and we also define two binary operations on Zm as

a⊕ b = (a+ b),

and
a� b = (a · b).

Check that these two binary operations are well-defined.

Exercise 3.2.2. Let m be a natural number. Then prove that (Zm,⊕) is a cyclic
group.
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Remark 3.2.1. In Z4, we can check that 2�0 = 0, 2�1 = 2, 2�2 = 0, 2�3 = 2.
So, there is no element x ∈ Z4 such that 2 � x = 1. Thus not all elements in Zm
has multiplicative inverses.

Let n ∈ Zm with gcd{n,m} = 1. Then there exist integers n′ and m′ such that
nn′ +mm′ = 1, i.e., n� n′ ≡ 1 (mod m).

Conversely, if for some n ∈ Zm, there exist integers n′ such that n � n′ ≡
1 (mod m) holds, then gcd{n,m} = 1.

Thus we can easily sort out the elements of Zm which has multiplicative inverses
in Zm. The set of all elements which has multiplicative inverses is denoted by Z∗m.

Exercise 3.2.3. Let m be a natural number. Then prove that (Z∗m,�) is an abelian
group.

3.3 Linear congruences

Let f(x) = anx
n + an−1x

n−1 + . . .+ a0 be a polynomial of degree n with integer
coefficients and a0 6≡ 0 (mod m). Then f(x) ≡ 0 (mod m) is said to be a polynomial
congruence (mod m) of degree n.

Definition 3.3.1. A polynomial congruence of degree 1 is called a linear congruence.

Thus the general form of a linear congruence modulo m is ax ≡ b (mod m),
where a 6≡ 0 (mod m).

An integer α is said to be a solution of ax ≡ b (mod m), if aα ≡ b (mod m). If α
is a solution to ax ≡ b (mod m), then α+qm are also solutions of ax ≡ b (mod m),
where q ∈ Z.

Thus two solutions α and β (if exists) of ax ≡ b (mod m), are said to be distinct
if (α− β) is not divisible by m.

Example 3.3.1. The congruence equation 2x ≡ 3 (mod 4) has no solution as
(2x− 3) is an odd number for every integer x.

Example 3.3.2. The congruence equation x2 ≡ 1 (mod 8) has a solution 1. Thus
another solutions are 1 + 8q, but they are not “distinct” from 1. Thus residue class 1
with respect to modulo 8 is a solution of the given congruent equation, i.e., 1 (mod 8)
is a solution.

Example 3.3.3. It can be shown that the congruence equation x2 ≡ 1 (mod 8) has
four “distinct” solutions. They are 1, 3, 5, 7. More generally, solutions are 1 (mod 8),
3 (mod 8), 5 (mod 8), 7 (mod 8).

Theorem 3.3.1. Assume a,m ∈ N and gcd(a,m) = 1. Then the linear congruence
ax ≡ b (mod m) has exactly one solution modulo m.

34



Chapter 3 Congruences

Proof. Since gcd(a,m) = 1, so there exist integers u and v such that au+mv = 1.
Thus a(bu)− b is divisible by m. Hence

a(bu) ≡ b (mod m).

Thus bu is a solution to the linear congruence ax ≡ b (mod m).
Now, we have to show that this solution is unique up to modulo m. If not, then

assume that x1 and x2 be two solutions to the linear congruence ax ≡ b (mod m).
Then

ax1 ≡ b (mod m) and b ≡ ax2 (mod m).

Since congruence relation is transitive, so ax1 ≡ ax2 (mod m), i.e., m divides
a(x1−x2). But gcd(a,m) = 1 (i.e., a and m has no common factor other than ±1).
Thus m divides (x1 − x2), i.e., x1 ≡ x2 (mod m). This completes the proof.

Example 3.3.4. Find all integer x such that 5x ≡ 2 (mod 3).

Solution:
Here gcd(5, 3) = 1, so there exist integers u and v such that

5u+ 3v = 1. (3.3.1)

Now, by the Division Algorithm, we have

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1 + 0.

Thus

1 = 3− 2 = 3− (5− 3) = 5 · (−1) + 3 · (2). (3.3.2)

Now, subtracting (3.3.2) from (3.3.1), we obtain

5(u+ 1) = −3(v − 2).

Thus 3 | (u+1), i.e., u = −1+3t, where t ∈ Z. Hence all solutions are u = −1+3t,
where t ∈ Z.

Theorem 3.3.2. Assume a,m ∈ N and gcd(a,m) = d. Then the linear congruence
ax ≡ b (mod m) has solutions if and only if d | b.

Proof. Assume that the linear congruence ax ≡ b (mod m) has a solution, say x0.
Then ax0 = mq + b for some q ∈ Z. Again, since gcd(a,m) = d, so there exist
integers u and v such that a = du and m = dv. Thus

b = ax0 −mq = d(ux0 − vq),
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which implies d | b.
Conversely, assume that d | b. Since gcd(a,m) = d, so there exist integers r, s and
t such that b = rd and as+mt = d. Thus

b = rd

= r(as+mt).

Thus m | (a(rs)− b), i.e., a(rs) ≡ b (mod m). This completes the proof.

Theorem 3.3.3. Assume a,m ∈ N, gcd(a,m) = d and d | b. Then the linear
congruence ax ≡ b (mod m) has exactly d solutions modulo m.

Moreover, the solutions are given by

t, t+
m

d
, t+

2m

d
, . . . , t+ (d− 1)

m

d
.

Proof. Since d | b, so by our previous result, the linear congruence ax ≡ b (mod m)
has a solution, say t. Thus m | (at− b).

Now, we establish that xi = t + i · m
d

is a solution to the linear congruence
ax ≡ b (mod m) where 0 ≤ i ≤ (d− 1). Now,

axi − b = a(t+ i · m
d

)− b

= m

(
at− b
m

+
a · i
d

)
≡ 0 (mod m).

Next, we show that all xi’s are distinct up to modulo m. If possible, let
xi ≡ xj (mod m), where 0 ≤ i, j ≤ (d − 1). Then m | (i−j)m

d
, but gcd(a,m) = d.

So, m | (i− j). Again, as d | m and 0 ≤| i− j |< d, so i = j.
Lastly, we have to show that if y is a solution to the linear congruence ax ≡

b (mod m), then y ≡ xr (mod m) for some r with 0 ≤ r < d. Since y is a solution
to the linear congruence ax ≡ b (mod m), so

ay ≡ b (mod m).

Also, t is a solution to the linear congruence ax ≡ b (mod m),i.e.,

at ≡ b (mod m).

Thus
ay ≡ at (mod m).

Hence m | a(y − t), but as gcd(a,m) = d, so m
d
| (y − t), i.e., y = t + r′ · m

d
for

some integer r′. Now, by the division algorithm, r′ = q · d + r where 0 ≤ r < d.
Thus y = t+ q ·m+ r · m

d
≡ t+ r · m

d
(mod m). This completes the proof.

Exercise 3.3.1. If d = gcd{a,m}, then ax ≡ ay (mod m) ⇔ x ≡ y (mod m
d

).
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Exercise 3.3.2. Solve in integers:

20x ≡ 10 (mod 35).

Exercise 3.3.3. Solve in integers:

x ≡ 3 (mod 17).

Exercise 3.3.4. Solve in integers:

7x ≡ 3 (mod 15).

3.4 Linear Diophantine equation

An equation in one or more unknowns which is to be solved in integers is said
to be a “Diophantine equation”. In our present discussion, we will discuss on the
Diophantine equation of the type ax+ by = c, where a, b, c are integers.

Theorem 3.4.1. The equation ax + by = c, where a, b, c are integers and a, b are
not both zeros, has solutions in integers if and only if d | c, where d = gcd{a, b}.

Proof. Given d = gcd{a, b}. Now, the equation ax+ by = c can be written as

ax ≡ c (mod b).

. Thus by Theorem 3.3.2, the equation ax + by = c has an integral solution if and
only if gcd{a, b} divides c. This completes the proof.

Moreover, if (x0, y0) is a solution of the equation ax+ by = c , then

a(x− x0) = −b(y − y0)

i.e.,
(x− x0)

b
d

= −(y − y0)
a
d

i.e.,
(x− x0)

b
d

= −(y − y0)
a
d

= t, (say)

for some integer t. That is,

x = x0 + t · b
d
, and y = y0 − t ·

a

d
,

for all integer t.

Example 3.4.1. Find the integral solutions of the equation 13x+ 4y = 115.
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Solution:
Since gcd{13, 4} = 1, so there are integers u and v such that 13u + 4v = 1. Now,
by Division Algorithm, we obtain

13 = 3 · 4 + 1

so, 115 = 13(115) + 4(−3 · 115)

Thus x = 115 and y = −345 is a solution to the given equation. Moreover,

13(x− 115) + 4(y + 345) = 0.

Thus u = 115 + 4t and v = −345− 13t (t ∈ Z) is the general solution of the given
equation.

Exercise 3.4.1. Find the integral solutions of the equation 7x+ 11y = 1.

3.5 Euler’s theorem and its applications

We have already introduced the Euler’s totient function ϕ : N → R. If n ≥ 1,
the the Euler’s totient function ϕ(n) is defined to be the number of positive integers
not exceeding n and relatively prime to n.

Theorem 3.5.1 (Euler’s Theorem). If n ∈ N and gcd{a, n} = 1, then

aϕ(n) ≡ 1 (mod n).

Proof. Since gcd{a, n} = 1, so by our previous discussion, a ∈ Z∗n. Since (Z∗n,�) is
a group of order ϕ(n), so by Lagrange’s Theorem, the order of a divides ϕ(n). Thus
aϕ(n) = 1. Hence,

aϕ(n) − 1 ≡ (mod n).

Corollary 3.5.1. If a prime number p does not divide a, then

ap
2−p ≡ 1 (mod p2).

Proof. Since gcd{a, p} = 1, so gcd{a, p2} = 1. Thus by Euler’s Theorem,

ap(p−1) = aϕ(p
2) ≡ 1 (mod p2).

If n is a prime number, then the following result is an immediate consequence of
Euler’s Theorem.

Corollary 3.5.2 (Fermat’s Theorem). If a prime number p does not divide a, then

ap−1 ≡ 1 (mod p).
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Corollary 3.5.3. If a prime number p does not divide a, then

ap ≡ a (mod p).

Example 3.5.1. Find the last digit of 3100.

Solution:
Let n ∈ N, then n can be written as n = a1 +a210+a3102 + . . .+ak10k−1. Thus a1
is the last digit of n if and only if 10 | (n−a1), i.e., if and only if n ≡ a1 (mod 10).

Now, using Euler’s Theorem, we obtain,

34 = 3ϕ(10) ≡ 1 (mod 10)

Thus (34)25 ≡ 1 (mod 10). So the last digit is 1.

Example 3.5.2. Find the last two digits of 3100.

Solution:
Let n ∈ N, then n can be written as n = a1 + a210 + a3102 + . . .+ ak10k−1. Thus
a1 + a210 is the last two digits of n if and only if 100 | (n− a1 − a210), i.e., if and
only if n ≡ a1 + a210 (mod 100).

Now, using Euler’s Theorem, we obtain,

340 = 3ϕ(100) ≡ 1 (mod 100),

i.e. 380 ≡ 1 (mod 100),

i.e. 3100 ≡ 320 (mod 100).

Again,

320 = (81)5,

= (81× 81)2 × 81,

= (6561)2 × 81,

≡ (61)2 × 81, (mod 100),

= 3721× 81,

≡ 21× 81, (mod 100),

= 1701,

≡ 01, (mod 100).

Thus 3100 ≡ 01 (mod 100). So the last two digits are 01.

Example 3.5.3. If p be a prime, then show that 1p + 2p + . . .+ (p− 1)p is divisible
by p.

Solution:
Using Fermat’s Theorem, we obtain

ap ≡ a (mod p), gcd{a, p} = 1.
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Thus for 1 ≤ i ≤ p− 1, we have ip ≡ i (mod p). Thus

p−1∑
i=1

ip ≡
p−1∑
i=1

i (mod p)

=
p(p− 1)

2
≡ 0 (mod p).

3.6 System of linear congruences

A system of two or more linear congruences was first found in Chinese literature.
For this reason, these types of problems are known as “Chinese remainder theorem”.

“There are certain number of things whose number is unknown. If we count them
by the multiple of three, we have two left over; by the multiple of five, we have three
left over, and by the multiple of seven, we have two left over. How ,many things are
there?”

If We translated this problem in terms of congruence, the problem becomes:
Find the integer solution of the following system of linear equations:

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

Theorem 3.6.1 (Chinese remainder theorem). Assume m1,m2, . . . ,mr are pos-
itive integers and gcd{mi,mj} = 1 if i 6= j.

Let b1, b2, . . . , br be arbitrary integers. Then the system of congruences

x ≡ b1 (mod m1)

x ≡ b2 (mod m2)
...

x ≡ br(mod mr)

has exactly one solution modulo m1m2 . . .mr , i.e., if x0 be a solution, then x =
x0 + t(m1m2 . . .mr) is also solution for any integer t.

Proof. Let us construct two natural numbers as

M = m1m2 . . .mr, and

Mk =
M

mk

.

Then for any k ∈ {1, 2, . . . , r}, we have gcd{Mk,mk} = 1. Thus there exist integers
M

′

k ∈ Z and m
′

k ∈ Z such that MkM
′

k +mkm
′

k = 1. That is, for 1 ≤ k ≤ r,

MkM
′

k ≡ 1 (mod mk) (3.6.1)
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and, for 1 ≤ i ≤ r with i 6= k,
mi |Mk (3.6.2)

Now, we construct the following integer

x0 = b1M1M
′

1 + b2M2M
′

2 + . . .+ brMrM
′

r

Thus for 1 ≤ i ≤ r, and using (3.6.2) and (3.6.1), we have

x0 − bi
= b1M1M

′

1 + b2M2M
′

2 + . . .+ bi−1Mi−1M
′

i−1 + bi(MiM
′

i − 1)

+bi+1Mi+1M
′

i+1 + . . .+ brMrM
′

r

≡ bi(MiM
′

i − 1) (mod mi)

≡ 0 (mod mi).

Thus x0 satisfies every congruences in the system.
If possible, assume that y be another solution to the system of the congruences.

Then y ≡ bi (mod mi) for every i ∈ {1, 2, . . . , r}. Thus y ≡ x0 (mod mi) for every
i ∈ {1, 2, . . . , r}, i.e., mi|(y−x0) for every i ∈ {1, 2, . . . , r}. Since gcd{mi,mj} = 1
if i 6= j, so

m1m2 . . .mr|(y − x0).
Thus y ≡ x0 (mod M), i.e., the solution is unique upto congruence modulo M .

Remark 3.6.1. We have seen in (3.6.1), that

MkM
′

k ≡ 1 (mod mk), (3.6.3)

That is, M
′

k is the multiplicative inverse of Mk in Zmk
Example 3.6.1. Solve the following system of linear congruences

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

Solution: Here M = 105, M1 = 35, M2 = 21 and M3 = 15.
Now, we try to find the multiplicative inverse of M1 in Z3, multiplicative inverse

of M2 in Z5 and multiplicative inverse of M3 in Z7, i.e.,

35M
′

1 ≡ 1 (mod 3)

21M
′

2 ≡ 1 (mod 5)

15M
′

3 ≡ 1 (mod 7).

By Euler’s Theorem, we obtain, 35ϕ(3)(= 352) ≡ 1 (mod 3). Thus

35M
′

1 ≡ 1 (mod 3)

i.e., 352M
′

1 ≡ 35 (mod 3)

i.e., M
′

1 ≡ 35 (mod 3)

i.e., M
′

1 ≡ 2 (mod 3).
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Again by Euler’s Theorem, we obtain, 21ϕ(5)(= 214) ≡ 1 (mod 5). Thus

21M
′

2 ≡ 1 (mod 5)

i.e., 214M
′

2 ≡ 213 (mod 5)

i.e., M
′

2 ≡ 1 (mod 5), since 213 ≡ 1 (mod 5).

Similarly,

M
′

3 ≡ 15ϕ(7)−1 (mod 7)

i.e., M
′

3 ≡ 155 (mod 7)

i.e., M
′

3 ≡ 1 (mod 7), since 155 ≡ 1 (mod 7).

Thus x0 = 2 × 35 × 2 + 3 × 21 × 1 + 2 × 15 × 1 = 233 is a solution to the given
congruences, and the general solutions are 233 + 105t, t ∈ Z.

Example 3.6.2. Assume m1,m2, . . . ,mr are positive integers and gcd{mi,mj} = 1
if i 6= j.

Let b1, b2, . . . , br be arbitrary integers and a1, a2, . . . , ar satisfy gcd{ai,mi} = 1
for i = 1, 2, . . . , r. Then the system of congruences

a1x ≡ b1 (mod m1)

a2x ≡ b2 (mod m2)
...

arx ≡ br(mod mr)

has exactly one solution modulo m1m2 . . .mr .

Solution: Since gcd{ai,mi} = 1, so there exist integers a
′
i and m

′
i such that

aia
′
i + mim

′
i = 1, i.e., aia

′
i ≡ 1 (mod mi). Let ci = a

′
ibi. Then the system of

congruences changed to the following system of congruences:

x ≡ c1 (mod m1)

x ≡ c2 (mod m2)
...

x ≡ cr(mod mr)

Rest part of the proofs are follows from the Chinese remainder theorem.

Exercise 3.6.1. Solve the following system of linear congruences

x ≡ 2 (mod 5)

x ≡ 3 (mod 7)

x ≡ 5 (mod 8)

Exercise 3.6.2. Solve the following system of linear congruences

3x ≡ 2 (mod 5)

4x ≡ 3 (mod 7)

3x ≡ 5 (mod 8)
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3.7 Public Key Encryptions

Public key cryptography(PKC) is an encryption technique that uses a paired public
and private key algorithm for secure data communication. A message sender uses a
recipient’s public key to encrypt a message. To decrypt the sender’s message, only
the recipient’s private key may be used.

The RSA (Rivest-Shamir-Adleman) is one of the first public-key cryptosystems
and is widely used for secure data transmission. In such a cryptosystem, the en-
cryption key is public and it is different from the decryption key which is kept secret
(private). Before going to discuss the RSA method, we introduce some terminologies:

Definition 3.7.1. Encryption is the process of converting data to an unrecognizable
or ”encrypted” form. It is commonly used to protect sensitive information so that
only authorized parties can view it,i.e., Encryption allows information to be hidden
so that it cannot be read without special knowledge (such as a password).

Definition 3.7.2. A Plaintext is un-encrypted information, i.e., the messages before
encryption, or, the raw data.

Definition 3.7.3. A Ciphertext refers to the output of the encryption process, i.e.,
encrypted data.

Definition 3.7.4. Decryption is the process of decoding encrypted information so
that is can be accessed again by authorized users, i.e., decryption is the reverse
process of encryption “plaintext”.

To make the data confidential, the “plaintext” is encrypted using a particular
algorithm and a public key. After encryption process, “plaintext” gets converted into
“ciphertext”. To decrypt the “ciphertext”, similar algorithm is used and at the end
the original data is obtained again.

Based on encryption and decryption, there are three types of cryptographic algo-
rithms:

i) Secret Key (Symmetric) Cryptography (SKC): This algorithm needs only
one single key for both encryption and decryption.

ii) Public Key (Asymmetric) Cryptography (PKC): This algorithm needs one
key for encryption and another one key for decryption.

iii) Hash Functions (One way cryptography): It is a mathematical algorithm
that maps data of arbitrary size to a bit string of a fixed size (known as hash
value) and is designed to be a one-way function, that is, a function which is
infeasible to invert. The only way to re-create the input data from an ideal
cryptographic hash function’s output is to attempt a brute-force search of
possible inputs to see if they produce a match, or use a rainbow table of
matched hashes.

Hash function has no key since the “plaintext” is not recoverable from the
“ciphertext”.
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We only discuss the RSA “public key cryptography”(PKC) algorithm. The RSA
algorithm is named after the famous mathematicians Ron Rivest, Adi Shamir and
Leonard Adleman, who invented this algorithm in 1977. This algorithm is used in
many software products, digital signatures, or encryption of small blocks of data etc.

RSA uses two different but mathematically linked keys. One key can be shared
with everyone, known as public key, whereas the key must be kept secret, known as
private key.

RSA Algorithm

The RSA algorithm involves four steps: key generation, key distribution, en-
cryption and decryption. Now, we describe the method with an example.

Example 3.7.1. Suppose client A(“Receiver”) sends its “public key” to the client
B(“Sender”) and requests him for some data. The client B “encrypts the data using
public key” of client A and sends the encrypted data to client A, then client A receives
this data and “decrypts it by his private key”.

The mathematics behind the RSA algorithm

Step-I: Key generation:
The two keys for the RSA algorithm are generated by the following way:

i. First, we consider two different large prime numbers p and q and calculate
n = pq.

ii. Next, we calculate Euler’s totient function φ (n) = φ (pq) = (p− 1) (q − 1).

iii. Then we choose an integer e such that 1 < e < φ (n) and gcd (e, φ (n)) = 1.
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iv. Finally, we find the inverse d of e in modulo Zϕ(n), i.e., de ≡ 1 (mod φ (n)).

Here, the Public Key is {e, n} and Private Key is {d, n}.
Step-II: Encrypting message
Now, client A sends his public key {e, n} to the client B and he must kept the

private key {d, n} to him secretely. Client B wants to send message M to client A.

i. First he turns M into a number m smaller than n.

ii. Then he computes the “ciphertext” c corresponding to “plaintext” m as follows:

me ≡ c (mod n),

and send it to client A.

Step-III: Decrypting message
Client A received the encrypted data c and he recovers the data m from c by

using his private key {d, n} as follows:

cd ≡ mde (mod n).

If m ≡ 0 (mod p), then mde ≡ 0 ≡ m (mod p). Otherwise, by Fermat’s theorem,
we obtain

mp−1 ≡ 1 (mod p).

Thus mϕ(n) ≡ 1 (mod p).
As, de ≡ 1 (mod φ (n)), i.e., de = 1 + k · ϕ(n)., so mde ≡ m (mod p).
Hence, for any m,

mde ≡ m (mod p).

Similarly,
mde ≡ m (mod q).

Thus

cd ≡ mde (mod n)

≡ m (mod n),

Now, from m, he gets the original message M .

One numerical example

Step-I: Key generation:

i. Let us consider two prime numbers p = 11 and q = 17.

ii. Now we compute n = pq = 187.
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iii. Thus φ (n) = φ (pq) = (p− 1) (q − 1) = 160.

iv. Next, we choose an integer e such that 1 < e < φ (n) and gcd (e, φ (n)) = 1,
i.e., 1 < e < 160 and gcd (e, 160) = 1. Therefore, we choose e = 7.

v. Finally, we compute d such that de ≡ 1 (mod φ (n)), i.e, 7d ≡ 1 (mod 160).
Thus d = 23.

Therefore the public key is {7, 187} and the private key is {23, 187}.
Step-II: Encrypting message
Suppose client B want to send the message “E” to client A. So, Client B turns

“E” into a number m = 5 (accordingly alphabetical positions), and obtain the “ci-
phertext” c corresponding to “plaintext” m as follows:

c ≡ me (mod n)

= 57 (mod 187)

≡ 146 (mod 187).

Thus client B send c = 146 to client A.
Step-III: Decrypting message
Now, client A, decrypt the “ciphertext” c = 146 to “plaintext” as follows:

m ≡ cd (mod n)

= 14623 (mod 187)

=
[
(146)2

]11 × 146 (mod 187)

≡ (185)11 × 146 (mod 187)

=
[
(185)2

]5 × 185× 146 (mod 187)

≡ 45 × 82 (mod 187)

≡ 5 (mod 187).

Thus client A got the “plaintext” m = 5 and can get the original message “E”.
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