Digital Electronics

Dr Anjan Kumar Chandra
Assistant Professor Department of Physics Ramakrisfina Mission Vivekananda Centenary College

- A computer understands 0 and 1
- Binary digits

DECIMAL

\uparrow

DECIMAL NUMBER SYSTEM

BINARY NUMBER SYSTEM

DIGITS
0,1
BASE

Weight	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
Value	1	0	1	1	0

$$
0^{*} 2^{0}+1^{*} 2^{1}+1^{*} 2^{2}+0^{*} 2^{3}+1^{*} 2^{4}=21
$$

OCTAL NUMBER SYSTEM

25367
$2^{*} 8^{4}+5^{*} 8^{3}+3^{*} 8^{2}+6^{*} 8^{1}+7 * 8^{0}$

HEXADECIMAL NUMBER SYSTEM

A5C67
$10 \star 16^{4}+5^{*} 16^{3}+12^{*} 16^{2}+6 * 16^{1}+7 * 16^{0}$

BINARY TO DECIMAL

10101 $1 * 2^{4}+0 * 2^{3}+1 * 2^{2}+0 * 2^{1}+1^{*} 2^{0}=16+0+4+0+1$ = 21

DECIMAL TO BINARY

21 DECIMAL NUMBER

Divide the decimal number by 2 until the final result equals 0

LOGIC GATES

- Logic gates are the fundamental building blocks of integrated circuits.
- They perform basic logical functions.
- They take input as 1 or 0 and gives output as 1 or 0 following certain logical rules.

NOT GATE

AND GATE

OR GATE

NAND GATE

Symbol	Truth Table		
	B	A	Q
	0	0	1
	0	1	1
	1	0	1
	1	1	0
Boolean Expression $\mathbf{Q}=\mathrm{A}^{-} . \mathbf{B}$	Read as A AND B gives NOT Q		

NOR GATE

Symbol	Truth Table		
	B	A	Q
	0	0	1
	0	1	0
	1	0	0
	1	1	0
Boolean Expression $\mathbf{Q}=\overline{\mathrm{A}} \overline{+} \mathbf{B}$	Read as A OR B gives NOT Q		

NAND AS UNIVERSAL GATE

We can realise all of the other Boolean functions and gates by using just one single type of universal logic gate, the NAND (NOT AND) gate.

AND Gate

NOR AS UNIVERSAL GATE

We can realise all of the other Boolean functions and gates by using just one single type of universal logic gate, the NOR (NOT OR) gate.

OR Gate

EXCLUSIVE-OR (XOR) GATE

Symbol	Truth Table		
2-input Ex-OR Gate	B	A	Q
	0	0	0
	0	1	1
	1	0	1
	1	1	0
Boolean Expression $\mathrm{Q}=\mathrm{A} \oplus \mathrm{B}$	A OR B but NOT BOTH gives Q		

PARITY CHECKER

- If the sum of the binary bits in a word is odd (even), the word is said to have odd (even) parity.
- The circuit that checks this parity is called parity checker.

EXCLUSIVE-NOR (XNOR) GATE

Symbol	Truth Table		
	B	A	Q
	0	0	1
	0	1	0
	1	0	0
	1	1	1
Boolean Expression $\mathrm{Q}={ }^{\text {A }}$ A $\oplus \mathrm{B}^{\prime}$	Read if A AND B the SAME gives Q		

Ex-NOR Gate Equivalent Circuit

BOOLEAN ALGEBRA

- In 1854, Logical algebra was published by George Boole, today known as Boolean algebra
- Only two states or values of a variable are allowed . 1 and 0 (corresponding to " $O \mathcal{N}$ " and " $O \mathcal{F F}$ " states in a electronic circuit)
- In 1938, Claude Shannon was the first to apply Boole's work to the analysis and design of logic circuits.

BASIC OPERATIONS

- OR addition (indicated by a "+" sign):

$$
\mathrm{Y}=\mathrm{A}+\mathrm{B} \quad \mathrm{Y} \text { equals } \mathrm{A} \text { or } \mathrm{B} \text { (} \mathrm{Y} \text { is ' } \mathrm{ON} \text { ' when any of the inputs is ' } \mathrm{ON} \text { ') }
$$

If $\mathrm{A}=0$ and $\mathrm{B}=0$, then $\mathrm{Y}=0(0+0=0)$
If $\mathrm{A}=0$ and $\mathrm{B}=1$, then $\mathrm{Y}=1(0+1=1)$
If $\mathrm{A}=1$ and $\mathrm{B}=0$, then $\mathrm{Y}=1(1+0=1)$
If $\mathrm{A}=1$ and $\mathrm{B}=1$, then $\mathrm{Y}=1(1+1=1)$
In general, if there are N inputs and one output, then the output is 1 , if any of the N inputs is in 1 state.

This operation is accomplished by a OR gate.

BASIC OPERATIONS

- $\mathcal{A N}(D)$ multiplication (indicated by a "." sign) :
$\mathrm{Y}=\mathrm{A} . \mathrm{B} \longrightarrow \mathrm{Y}$ equals A or B (Y is ' ON ' when any of the inputs is ' ON ')
If $\mathrm{A}=0$ and $\mathrm{B}=0$, then $\mathrm{Y}=0(0.0=0)$
If $A=0$ and $B=1$, then $Y=1(0.1=1)$
If $\mathrm{A}=1$ and $\mathrm{B}=0$, then $\mathrm{Y}=1(1.0=1)$
If $\mathrm{A}=1$ and $\mathrm{B}=1$, then $\mathrm{Y}=1(1.1=1)$
In general, if there are N inputs and one output, then the output is 1 , if all of the N inputs is in 1 state.

This operation is accomplished by a AND gate.

BASIC OPERATIONS

- $\mathcal{A N}(D)$ multiplication (indicated by a "." sign) :
$\mathrm{Y}=\mathrm{A} . \mathrm{B} \longrightarrow \mathrm{Y}$ equals A or B (Y is ' ON ' when any of the inputs is ' ON ')
If $\mathrm{A}=0$ and $\mathrm{B}=0$, then $\mathrm{Y}=0(0.0=0)$
If $A=0$ and $B=1$, then $Y=1(0.1=1)$
If $\mathrm{A}=1$ and $\mathrm{B}=0$, then $\mathrm{Y}=1(1.0=1)$
If $\mathrm{A}=1$ and $\mathrm{B}=1$, then $\mathrm{Y}=1(1.1=1)$
In general, if there are N inputs and one output, then the output is 1 , if all of the N inputs is in 1 state.

This operation is accomplished by a AND gate.

DE MORGAN'S THEOREM

- De Morgan's first theorem :

If A and B are two variables, then

$$
\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}
$$

Proof :

A	\bar{B}	$\overline{\mathrm{~A}+\mathrm{B}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{B}}$	$\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	0

DE MORGAN'S THEOREM

- De Morgan's second theorem :

If A and B are two variables, then

$$
\overline{\mathrm{A} . \mathrm{B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}
$$

Proof :

A	\bar{B}	$\overline{\mathrm{~A} . \mathrm{B}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{B}}$	$\overline{\mathrm{A}}+\overline{\mathrm{B}}$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	0	0	0

- NOT operation (indicated by a "-" sign):
$\mathrm{Y}=\overline{\mathrm{A}} \longrightarrow \mathrm{Y}$ equals complement of $\mathrm{A}(\mathrm{Y}$ is ' OFF ' (ON) when A is ' ON ' OFF)
If $\mathrm{A}=0$ and $\mathrm{Y}=1$
If $\mathrm{A}=1$ and $\mathrm{Y}=0$
This operation is accomplished by a NOT gate.

BINARY ADDITION

$$
\begin{aligned}
& 0+0=0 \\
& 1+0=1 \\
& 0+1=1 \\
& 1+1=10
\end{aligned}
$$

$$
\begin{array}{r}
10^{1} 0^{1} 1 \\
+1011 \\
\hline 10100
\end{array}
$$

$$
{ }^{1} 1^{1} 1^{1} 1
$$

$$
\begin{array}{r}
1101 \\
\hline 10100
\end{array}
$$

BINARY SUBTRACTION

- 1's complement of a binary number is obtained by changing each 0 of the number to 1 and each 1 to 0 . 1's complement of 11001 is 00110.
- 2's complement of a binary number is obtained by adding 1 to its 1's complement. 2 's complement of 11001 is $00110+1=00111$.

BINARY SUBTRACTION by 1's complement

A) The 1's complement of the number to be subtracted is determined.
B) The 1's complement is added to the number from which the subtraction is desired.
C) When there is 1 carry in the last position of the result of addition in step B, the carry is added to the result without the carry to obtain the final result.

Let us subtract 1011 from 1101.

- Step A \longrightarrow The number to be subtracted is 1011

1's complement of 1011 is 0100

- Step B \longrightarrow

BINARY SUBTRACTION by 2's complement

A) The 2's complement of the number to be subtracted is determined.
B) The 2's complement is added to the number from which the subtraction is desired.
C) (i) If there is 1 carry in the last position of the result of addition in step B, the carry is just rejected to get the final result and the answer is positive.
(ii) If there is no carry in the last position of the result of addition in step B, the answer is negative. The 2's complement of the added result (got in $\mathrm{C}(\mathrm{i})$) is found and a minus sign is assigned to get the final result.

BINARY SUBTRACTION by 2's complement

Let us subtract 1011 from 1101.

- Step A The number to be subtracted is 1011

2's complement of 1011 is 0101

- Step B \longrightarrow

$$
1^{1} 10^{1} 1
$$

$$
0010 \quad \text { Step C(i) }
$$

- Let us subtract 1101 from 1011.

Step A The number to be subtracted is 1101
2's complement of 1101 is 0011

- Step B

$$
\begin{array}{r}
101^{1} 1 \\
+0011 \\
\hline 1110
\end{array} \quad-0010 \quad \text { Step C(ii) }
$$

Basic laws of Boolean algebra

A) The Commutative laws :

Commutative law of addition : $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
Commutative law of multiplication : A.B $=\mathrm{B} . \mathrm{A}$
B) The Associative laws :

Associative law of addition : $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$
Associative law of multiplication : $A(B C)=(A B) C$
C) The Distributive law : $A(B+C)=A B+A C$

Some basic relations of Boolean algebra

OR

- $\mathrm{A}+0=\mathrm{A}$
- $A+1=1$
- $A+A=A$
- $A+\bar{A}=1$

AND

$$
\mathrm{A} .0=0
$$

$$
\mathrm{A} .1=\mathrm{A}
$$

$$
A \cdot A=A
$$

$$
A \cdot \bar{A}=0
$$

$$
\text { Prove : } \mathrm{A}+\mathrm{AB}=\mathrm{A} \quad \text { and } \quad \mathrm{A} \cdot(\mathrm{~A}+\mathrm{B})=\mathrm{A}
$$

$$
A(\bar{A}+B)=A B
$$

$$
(\bar{A}+B)(A+C)=\bar{A} C+A B
$$

$$
A+\bar{A} B=A+B
$$

$$
(A+B)(B+C)(C+A)=A B+B C+C A
$$

[Product of the sums $(\mathrm{POS})=$ Sum of their products (SOP)]

Canonical and Standard Forms of Boolean functions

Two binary variables A and B can be combined with an AND operation as

$$
\begin{aligned}
\overline{\mathrm{A}} \overline{\mathrm{~B}}, \overline{\mathrm{~A}} \mathrm{~B}, \mathrm{~A} \overline{\mathrm{~B}}, \mathrm{~A} \mathrm{~B} \longrightarrow & \text { Each of these terms is called a } \\
& \text { minterm or standard product. }
\end{aligned}
$$

- Each variable is overlined if it is a 0 and not overlined if it is 1. In general n binary variables can be combined to give 2^{n} minterms.

Two binary variables A and B can be combined with an OR operation as

$$
\overline{\mathrm{A}}+\overline{\mathrm{B}}, \overline{\mathrm{~A}}+\mathrm{B}, \mathrm{~A}+\overline{\mathrm{B}}, \mathrm{~A}+\mathrm{B} \quad \text { Each of these terms is called }
$$

a maxterm or standard sum.

In general n binary variables can be combined to give 2^{n} maxterms.

- Each variable is not overlined if it is a 0 and overlined if it is 1.

Canonical and Standard Forms of Boolean functions

The symbol for a minterm is m_{j} and for a maxterm is M_{j}
where j represents the decimal equivalent of the concerned term.

- The three variable minterm $\bar{A} \bar{B} \bar{C}$ has the decimal equivalent 0 .

So its symbol is m_{0}

- The corresponding maxterm $A+B+C$ is designated by M_{0}

The minterm $\bar{A} B C$ has the decimal equivalent 3 ($A=0, B=1, C=1$)
So it is denoted by m_{3}

- The corresponding maxterm $A+\bar{B}+\bar{C}$ is represented by M_{3}

Canonical and Standard Forms of Boolean functions

Binary variables			Minterm	Minterm designation	Maxterm	Maxterm designation
0	0	0	$\bar{A} \bar{B} \bar{C}$	mo	A + B + C	M
0	0	1	$\bar{A} \bar{B} C$	m_{1}	$A+B+\bar{C}$	M_{1}
0	1	0	$\bar{A} B \bar{C}$	m_{2}	$\mathrm{A}+\overline{\mathrm{B}}+\mathrm{C}$	M
0	1	1	$\overline{\mathrm{A}} \mathrm{BC}$	m_{3}	$A+\bar{B}+\bar{C}$	M
1	0	0	$A \bar{B} \bar{C}$	m_{4}	$\bar{A}+B+C$	M
1	0	1	$A \bar{B} C$	m_{5}	$\bar{A}+B+\bar{C}$	M_{5}
1	1	0	$A B \bar{C}$	m_{6}	$\bar{A}+\bar{B}+C$	M
1	1	1	ABC	m_{7}	$\bar{A}+\bar{B}+\bar{C}$	M ${ }_{7}$

Canonical and Standard Forms of Boolean functions

A Boolean function can be expressed from a truth table by

- forming a minterm of each combination of the variables giving a 1 in the function and
- Then taking the OR of all these terms.

Thus any Boolean function can be expressed as a sum of minterms.

