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Selected Topics on FElectromagnetic Theory

1 Maxwell’s equations

Electrodynamics is the branch of physics in which we discuss interactions among charges while they
are in rest or in motion as well as interaction of electromagnetic (EM) wave with charges and related

phenomena. The theory of electrodynamics is governed by three fundamental laws,
1. Gauss’s law
2. Faraday’s law
3. Ampere’s circuital law

The mathematical form of these laws can be expressed both in differential and integral form. In
free space (where there is no medium) the mathematical form of these laws;

Differential form :

v.E="L (Gauss’s law)

€0
B
VxE= —aa—t (Faraday’s law)
V x B = uogJ (Ampere’s circuital law) (1)

Apart from these three laws, there is a very special properties of magnetic field : it’s divergence

1S zero,
V-B=0

This is the manifestation of the fact that magnetic monopole does not exist. Physically, divergence
measures the outward flux of a vector field. Since there is no magnetic monopole, magnetic field
vector originating from north pole must terminate to the south pole resulting net outward flux to
be zero.

Integral form!

f E . da = Qenc (Gauss’s law)

%E dl = —déj (Faraday’s law)

7{ B - dl = uglep. (Ampere’s circuital law)

% B-.da=0 (2)

Everything is fine except the Ampere’s circuital law. The problem and its corrected form due

to Maxwell is discussed in the following section.

!The integral forms can be obtained using divergence theorem and Stoke’s theorem to the differential forms.
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1.1 Maxwell’s equations in free space

As already mentioned that something is wrong to the Ampere’s circuital law. Consider the differ-

ential form of the Ampere’s law and take divergence on both sides,
V- (VxB)=uV-J (3)

Now, div. of curl is always zero from vector identity; however the right hand side expression : V-J
is not always zero. It vanishes only for steady current where there is no accumulation of charges.
In other words, inflow rate of charges is same as of the outflow rate such that total divergence of J
turns out to be zero.

The general form of this law should be corrected in such a way that it takes into account the
non-steady case also. Maxwell did this job in a very ingenious way. The Maxwell’s corrected form
has a great impact in the field of physical sciences bearing widespread consequences.

The continuity equation associated with the charge conservation,

dp
LTav.J= 4
ot J=0 4)

From which using the Gauss’s law we can find,

dp 0
That means,
OF
V.l|J — | =0 6
(7+a%) (©
So, if we transform,
OF
J J —
— ( + € at)

in the Ampere’s circuital law then the problem will be resolved. The corrected form of the Ampere’s

circuital law proposed by Maxwell,

OF
V x B = pod + NOEOE (7)

In this equation, divergence of both sides vanish.

The four basic laws of electrodynamics altogether are known as Maxwell’s field equations. Before
Maxwell’s work, there was no clear picture about the connectivity of F and B fields. After Maxwell’s
work, the mathematical forms of the laws take symmetric form in between E and B field which
is explicitly observed in Faraday’s law and Ampere’s law. In Faraday’s law : changing magnetic
field produces electric field and in Ampere’s law (corrected form) : changing electric field produces
magnetic field. Basically both E and B are same entities observed from different frame of references
(which is clearly discussed in the context of relativity theory).

Finally we have the Maxwell’s equations in the free space (no material medium)
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Differential form :

0 VB < LY

€0

(i) V-B(rt) =0

0B(r,t) (8)
ot

(iv) V x B(r,t) = pod (r,t) + poco

(i) V xE(rt)=

OE(r,t)
ot

Where the differentiations are performed at (r,¢) point and the source terms i.e; charge density and
current density are to be taken at the same point (r,¢). That means at those points where there is

no charge density, V - E becomes zero.

(i) jiE-da = Qee

€0

(ii) ]iB cda =0 o)
dPp

E.q=_ %8
(iii) ]{c o
(IV) f B-dl = H’O[enc + Ho€o

C

Integral form :

ddpg
dt

The term,

dd
E [
0" dt

is known as displacement current and the corresponding displacement current density is,
oFE

JD = EOE (10)

The concept of displacement current can be understood with the example of parallel plate

capacitor connected to a source. The source will charge the parallel plates of the capacitor and that
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eventually produces electric field across the plates. Suppose, o(t) be the surface charge density at

the capacitor plates, then,

=2
€0
The associated displacement current becomes,
ddg
Ip = ¢g——
D = €0 dt
d
= €0£(EA) ; A= area of the plates
d dqQ
= — A = —
"N =

Now, C;—Cf is the actual current flowing through the circuit. So, the displacement current in between
two plates is identical to the physical current flowing through the circuit. Through the connecting
wires, there is no displacement current and in reverse there is no physical current in between two

plates of the capacitor.

Exercise 1. From the Coulomb’s law, electrostatic field for a point charge (located at r = 0) is

given by, A
q T
E(r)= —
(r) 4d7ey 12
Check the consistency of
v.E="
€0
and ]{E-da:g (11)
S €o

Solution :
The given field E(r) is spherically symmetric due to its structure. Expression of divergence in

spherical polar coordinate is given by,

10 1 0 1 0

-E=——(r’E, — (sinbE —(E 12
v 72 Or (T )+Tsin909(sm 0)+rsin98q§( ¢) (12)

For the given field,

q
4mregr? a o ¢
Therefore,
10 10 q

v 72 Or (r ) r2 Or (T 471'607"2) (13)

As expected, the divergence of E is to be zero for r # 0 because the charge is located exactly at
r = 0. But it should be equal to p/eg at r = 0 according to Maxwell’s equation. This paradoxical
situation arises due to the singularity arises from the point charge located at r» = 0; it is not possible

to describe a point charge by means of any analytic expression of charge density p(r) in form of,

§= /V p(r)dir

5
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Special care should be taken in the divergence of E for point charge. Normal procedure to carry
out the divergence fails at the point where the point charge is located.

Introduce the Dirac delta function in three dimension,

ir)=0 sfor r#0
# 0 jfor 1 =0 (14)

Along with its basic property,
| s = 1) (15)

v
With the help of delta function, the charge density associated with point charge located at r = 0

can be expressed as,
p(r) = qé(r) (16)

Then, divergence of E for point charge ¢ at origin is defined as,

47eg r2 €o

v.E=Lv. (5) ~ Lo (17)

In the same spirit the divergence of inverse square function is defined as,

v. <i> — 4md(r) (18)

r2

Consider the integral,

J— A2 o
%E da = ]{ e r2 \(rr sin Qdegzﬁ)J (19)
da
q T 21
— ind db d 20
47T60 0 S /0 ¢ (20)

ﬁE-@:a (21)

1.2 Maxwell’s equations in matter

Everything is fine with the Maxwell’s equation as prescribed from (i) to (iv) in equations (8) and
(9) in free space, however inside matter, electric and magnetic fields produce electric and magnetic
polarization to the material and as a result, bound charges and bound currents are formed on which
we do not have explicit control. Furthermore, bound charges and bound currents give rise to new
electric and magnetic field which superpose with the former fields (responsible for bound charges
and currents). In this context it is convenient to rewrite the Maxwell’s equations in terms of free
charges and free currents on which we have direct control.

If the electric polarization vector is P then, bound charges associated with P,

P = -V.P (22)
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and similarly bound current density Jj, associated with the magnetic polarization vector M is,
J,=V xM (23)

Now we add a new feature related to the time dependent case. Suppose, the polarization P is
time dependent, then change of polarization gives rise to polarization current density J,. Physically
polarization is the phenomena in which there is a separation of positive and negative charge density
by very small spatial gap. Change of polarization in time means some amount of charge is flowing
from positive to negative region or vice-versa that will results in flow of charge in time means current

flow. Polarization gives rise to accumulation of bound surface charge density +o}, given by,
Op = P-n

where, 11 is the surface normal unit vector. In case, if polarization changes with time, associated
surface charge density also changes. The change of surface charge density can be interpreted as flow

of charge to the surface resulting a current called polarization current. Total charge on a surface

qQ = / opda
s
Then, polarization current becomes,

de Gab oP
I, — _ iy _
b= dt bda / da = / 5 -da

Therefore, the polarization current density identified as,

due to bound charge density o, is,

P
5P

BT (24)

One thing is to be made clear that increase of bound surface charge density means flow of
bound volume charge density to the surface and vise-verse such that total bound charge density
(including volume charge and surface charge) remains constant. So, bound charge density should

obey continuity equation. Let’s check,

g5 -2 v.pv.22
ot (%H—/ ot
Pb J,

There is non violation of continuity equation.

Now total volume charge density,

p=pr+p=py—V-P

and total current density,

oP

J=Ji+Jhph+J,=Jy+V XM + — ot

where, f stands for free and b stands for bound
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Hence, the Gauss’s law becomes,

P 1 1
V-E=—=—(py+p)=—(py -V P)
€o €o €o

= V. («E + P) = py
Ol", V'D:pf

where, the displacement vector D is defined as,
D=¢E+P

The Ampere’s law can be expressed as,

oOFE
V xB= N0J+No€og
OF
= (g + Jy + Jp) + poco— -
oP OE
— M+ 2 =
M0<Jf+V>< +at)+ﬂo€08t
V x 1B M J—I—a(E—FP)
—B — = — (e
Ho TR
oD
VxH=J;+—
X ft o1
where,
H = iB - M
Ho
Therefore, Maxwell’s equations inside material become,
(i) V-D=p
(i) V-B=0
0B (25)
E=_"—
(iii)) V x 5
oD
. H— ob
(iv) V x Jr+ T
where,
D=¢E+P
H = iB - M
Ho

The equations takes simpler form when one deals with linear medium. In linear medium, polar-
ization P is linearly proportional to the electric field E and magnetization M is linearly proportional
to magnetic intensity H?. Basically, when electric field strength and magnetic field strength is quite

small, polarization and magnetization become proportional to field vectors. So, mathematically,

Px FE and M x H

2Not to consider that M o B, because in any circumstances V - B = 0 but in general V - M # 0.

8
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The proportionality constant are taken in a clever form to express the Maxwell’s equations in a
simple form.
P = ¢yx.FE and M =y, H

where, y. is called electrical susceptibility and ., is magnetic susceptibility.

Now, for linear media,

D=cE+P=c(l+x.)E=¢E
where, e =eo(1+ xe)

1 1
H=—B-M=—B-x,H
Ho Ho

1 1
-  B--B
to(1 =+ Xom) v

where,  p = po(1 + Xom)

=

So, for linear media in summary,

D=¢cE with e=¢y(1+x.)
1 . (26)
H-=-B with = po(l+ xm)
i
Therefore, from relations (25) and (26) in linear media Maxwell’s equations ,
() v.B="
i) V-B=0
0B (27)
g 9B
(ili) WV x o
OFE

Note : In linear media, Maxwell’s equation have the identical form to that in the vacuum; only
replacements are €9 — € = €o(1 + x.) and po — p = po(l + xom). Furthermore, we have to
consider only the free charges i.e; free volume charge density py and free current density J; which
are controllable.

Exercise 2. Consider a parallel plate capacitor is filled with linear dielectric of permittivity e
and permeability . Electrical conductivity of the dielectric is 0. Two ends of the capacitor are
connected to an alternating voltage source V (t) = Vysin(wt). Find the ratio of conduction current
1. to the displacement current I.
Solution :

Suppose the are of the plates is A and distance between two plates is d, then total resistance of

the dielectric material between two plates is,
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So, total conduction current

passing through the capacitor,

V()  cAV(t) oAV
R  d  d

sin(wt)

Electric field between two plates,

Displacement current density,

Displacement current,

Therefore,

OE(t) _edV(t)  ewly
ot d ot d

Jg=¢€ cos(wt)

A
Lo(t) = AJy(t) = E:VO cos(wt)

Id7max o we
g

]c,max

1.3 Boundary conditions

Going from one dielectric medium to another it is interesting to see how the fields are connected

across the boundary or interface between two media. This study is very much important to un-

derstand the phenomena of reflection and transmission of electromagnetic field at some surface

separating two media. To analyze the connectivity of fields at boundary of two linear media it is

easier to adopt the integral form of Maxwell’s relations (i)-(iv) of (25).

The integral form of equations (25),

(1) ng -da = Qf,enc.

(ii) ?{S B-da=0 -
w  fpea-—t [

(iv) }{H-dzzzfem+i/p.da
c ’ dt Jg

Refer to figure 2 (left), a surface is separating two media medium-1 and medium-2. Consider

a Gaussian surface of cylindrical shape with infinitesimal small height extended both side of the

surface. Electric flux through the curved surface is negligible due to its vanishingly small height;

only the flux need to be considered for two basal surfaces of area A (say). Then from relation (28-i),

or,

or,

(D1 "fL—DQ "fL)A:Qﬁenc:O'fA
Di — Dy =0y

a Bl — By = oy (for linear media)

10
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Figure 2:

In the same technique, using (28-ii),
B — By =0

Above two relations gives us the connections of fields of their perpendicular components to the
boundary surface.

The boundary conditions related to the parallel components of the fields can be developed
with the help of figure-2 (right). Consider a Amperean loop abcda going across the surface with

vanishingly small height extended across the surface in both sides. Now consider the Maxwell’s

]{E-dl:—i/B-da
c dt Js

where the line integral goes around the Amperean loop @ — b — ¢ — d — a and surface area

equation (28-iii),

is enclosed by this loop. According to consideration, width of the loop is vanishingly small i.e;
line segment ad and bc tends to zero resulting magnetic flux to be zero through the loop area.
Furthermore, due to same reason, line integration of E along b — ¢ and d — a vanishes. So, the

above equation becomes,

b d
/El-dl—i—/ E;-dl=0
ab Cc
or, /El'dl—/Ez‘dl:O
a d
b

or, / (Ey — Ey)-dl=0 ; since segment lengths ab = dc
This is true for any arbitrary line element parallel to the surface, therefore, we have,

E‘l‘ — Eg =0 across the boundary.

Now consider relation (28-iv),

d
fH-dl:If,er—/D-da
c dt Js

11
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for the Amperean loop a — b — ¢ — d — a depicted in figure-2(right). According to above
discussions, surface integration of D vanishes for this loop area. Also line integration of H becomes

zero for line segment b — ¢ and d — a. So, the above relation becomes,

b d
/ Hl'dl+/ Hz'dl:If,enc.

Suppose the surface caries a free surface current density> K which gives the enclosed free
current e, passing through the loop. If [ is the unit vector along a — b then dl = ldl. Hence,

the unit vector which is perpendicular to a — b line segment and parallel to surface is,
t=nxl

Here,
b . b ) b
Iﬁenc.:/ Kf-tdl:/ Kf-(ﬁ,xl)dl:/(foﬁ)-dl

Therefore from the above equations we have,

b d b
/ Hl-dl+/ H; - dl = Ifepe. :/ (K¢ xn)-dl

ab e b ’

or, /Hl-dl—/Hg-dl:/(foﬁ)-dl (29)
a d a

b b
or, /(Hl—Hg)'dl:/(KfX’fl)'dl
This is true for any arbitrary line element parallel to the surface, therefore, we have,

H {l — H2|| =K;xn ; across the boundary.

Here we summarize the boundary conditions of fields at the boundary separating two
media

(i) Dy — Dy =oy
(ii) B — By =0
)
)

30
(i) B} - Ey=0 (30)
(iv) H -H}=K;xn
For linear media, the boundary conditions become,
(1) Bl —eFy =o;
(ii) Bf — By =0
(i) El-El=0 (31)
1 1
(iv) —Bl-—=Bl=K;xn
1 M2

3Surface current demnsity is the amount of current flowing over the surface and passing through per unit line
segment which is perpendicular to flow and placed on the surface.

12
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1.4 Electromagnetic wave

Maxwell’s equations lead to wave equation for electric field E(r,t) and magnetic field B(r,t). This
is the most important outcome of Maxwell’s correction term in Ampere’s circuital law.

In vacuum, Maxwell’s equations are,

i) V-E(rt) =0
(i) V-B(r,t)=0
(i)  Vx E(rt) = —%
E
(iv) V x B(r,t) = ﬂoéom
ot
Now taking curl of (iii),
0
VX(VXE):—E(VXB)
0 OF
2 CE) = —= =
or, VZE+V(V-E) T <M0€0 m)
0
*E
or, V’E — Hoco 55 = 0

Similarly, taking curl of (iv) and using Maxwell’s equations, one can establish similar kind of
differential equation for B.

Hence we have electromagnetic wave equations in vacuum,

O*E
2 _
V°E — MOGOW =0
and (32)
0*’B
V’B — =0
Ho€o o2
> The standard form of wave equation associated with disturbance ¢ (r,t) is,
1 0%Y(r,t)
Vi(r,t) — ———2 =0 33
U(r,t) — =0 (3)
where, v is the speed of propagation of wave.
> The most important observation is that in electromagnetic wave, both electric field as well

as magnetic field exhibit wave nature. The electromagnetic wave in vacuum travels with constant

speed determined by two universal constants po and ¢; as,

=3 x10® m/s

CcC =
Ho€o

Which is identical to the experimentally determined speed of visible light in vacuum. So, light
is nothing but electromagnetic wave specified by a range of frequency of electromagnetic wave.

Furthermore, the speed is independent of particular choice of frame of reference. That means,

13
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Galilean velocity addition is no longer valid for electromagnetic wave. The speed remain constant
at the value of 3 x 10® m/s (in vacuum) whether the source and observer are in relative motion.

> In charge free and current free region of linear dielectric, the Maxwell’s equation take
the same form that of in vacuum with replacement of €5 — € = €o(1+ x.) and po — 1 = po(1+ Xum)-

That means wave equations in such situation become,

O’E
2 —
and (34)
0’B
2 _
VB — e 2 0
The wave propagation speed is identified as,
1

Ho€o

1.4.1 Solution of wave equation

The wave equation for E and B being identical, both will give identical solution. So, we seek
solution for any one of them say for E(r,t).

Consider Cartesian system (z, y, z) in which,
E(r,t) = E(z,y,2,t) = TE,(x,y, 2, t) + yE,(z,y, 2,t) + ZE. (2, y, 2, 1)

The wave equation,

1 0’°E

2 Ot?

or, V*&E,+9E,+2E.) =

V’E =
gﬁ(iEx +9E, + 2E.)

Therefore, for each Cartesian component, wave equation shares the same form,

1 0% -
szj(x,y,Z,t)_g@Ej(x,y,Z,t):0 ;

2 2 2 2
(24225120

i~ 2om

The equation can be solved by the method of separation of variable. Consider,

or,

Ej(2,y,2,1) = fi(z)f2(y) f3(2) fa(1)

14
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Then the above differential equation becomes,

2 2 2 2
P S g S f2 T

N N R
7 fi(z) da? foly)  dy? f3(z)  d2? c2fy(t) dt?

This is true for all value of z,y, 2, t, therefore it is possible only when each terms are equal to some

=0

constants. Consider,

1 dfi(z) ;2

fi(z) da? “
1 & f2( ) - k2
foly)  dy? Y
L &fs(2) _ o
f3(z) dz? z

1 1 d&h) 2
e fu(t) dt2

where,

K=k + K+ kK
The differential equations represents oscillatory behaviour. The solutions can be expressed as,
fi(x) = ay exp(Lizk,) , faly) = agexp(Liyky) , f3(z) = azexp(Lizk,) , fi(t) = a4 exp(Lick)
Therefore, the solution for Ej(x,y, 2, 1),

Ej(x,y,2,t) = fi(x) f2(y) f3(2) fa(t)
= ajaqazaq exp(xick, £ iyk, £izk, £ itck)
= Ey; expli(£k « r £ wt)]

where, we have introduced the wave vector

and also we guess the angular frequency w as,

w = clk| = ck

That means for each Cartesian component the solution of wave equation gives rise to the plane

wave solution
Ei(x,y,2,t) = Ey; expli(£k - r £ wt)] sforj=u, 9, 2

So, for E(r,t),
E(r,t) = &E,(v,y,2,t) + §Ey(2,y, 2, 1) + 2E.(2,y, 2, 1)
= (ZEo, + 9Eo, + 2Ey,) expli(xk - r £ wt)]
= Eyexpli(+k - r £ wt)]

15
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where Ey = (ZEy, + 9Eo, + 2Ey,) is the amplitude of wave.

Solving the wave equation for B(r,t), one can obtain the similar expression.

> Conventionally, plane progressive and monochromatic electromagnetic wave prop-

agating along the direction of wave vector k is represented as,

E(r,t) = Eyexpli(k - r — wt)] (35)
B(r,t) = Byexpli(k - 7 — wt)]
> Wave equation in curvilinear system : This is to be noted that it is very much com-

plicated to solve vector wave equation in curvilinear coordinate systems (e.g. spherical polar). The
Laplacian V? of a vector can not be decomposed according the vector components along the axes.

For example, in arbitrary curvilinear system (uq, ug, u3), one can express
E(r,t) = E(uy,us, us, t) = é1E1(uy, ug, us, t) + EaFo(uy, us, ug, t) + €3F3(uy, ug, us, t)
In cuvilinear system in general for i-th component,
(V’E), #V?E; 5 for i=1,2,3

This is due to the fact that in cuvilinear system, direction of unit vectors varies from point to point,
so, spatial derivative of the unit vectors are non-vanishing in general. That means the expression

VZ%(é;E;) can not be expressed as  é€;V2E; . So, in curvilinear system

3
V2E(uy, up, us, t) # Z &;V?E;(u1, uz, us, t)
i=1
However, such decomposition is possible in Cartesian system, which makes the vector wave equation

solvable in Cartesian system.

1.4.2 Elecromagnetic fields and wave vector are mutually perpendicular

So, far we have obtained the plane wave solution for electromagnetic wave as represented by (35).
Still we don’t know the nature of the wave; whether it is transverse or longitudinal. Further,
Maxwell’s equations tell something about the connection of electric and magnetic fields in wave.
Following we address these queries. To proceed through these topics, it may be helpful to go through

the following Exercise - 3

Exercise 3. Suppose three Cartesian axes are reassigned as (z,y, z) — (1, 2, r3), then show that,

8% expli(k - v — wt)] = ik; expli(k - r — wt)] ;for j=1,2,3 (36)
J

Solution :

16
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k = @1k + @oky + D3ky = Z &k

and r= 5%1131 + .’%21’2 + fi’!g]fg = Z i‘ml’m
m=1
Therefore,
3 3 3 3 3 3
k-r= Z Z(mlkl) (Zpxm) = Z Z kl:cmw = Z Z T kiO1m = lekl
=1 m=1 =1 m=1 St =1 m=1 =1
Now,
9 expli(k « r —wt)] = expli(k « r — wt)] i[z(k: r — wt)]
ﬁa:j p N p al'j
: o (. :
= expli(k - r — wt)] e | Z xiky ; w independent of x
i\ =

ai%exp[ i(k-r—wt)] =ikjexpli(k - r — wt)]

Hence proved

In Cartesian system (xy, 22, x3), the E(r, t) field for plane progressive electromagnetic wave can

be expressed as,

3

E(r,t) = Eyexpli(k - 7 — wt)] = (Z ;&onj) expli(k - 7 — wt)]

J=1

Ey

Now evaluate the divergence for the above field. In Cartesian system it is,

V- E(rt) = Zm] a(z - Eyexpli(k - r — wt)]

= Za:] (9aj ZleOI expli(k - r — wt)]

j=1
~ 0
= ZEOerXp[i(k.r_Wt)] 3 ij °ii'l = 041
= Ot
= Z Eyj(ik;) expli(k - r — wt)] ; using Exercise - 3
j=1

V.E(r,t)=ik- E(r,t)

17
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Now, consider the Maxwell equation in charge free region,
V.-E(r,t)=0

Therefore, we have obtained that

V.-E(r,t)=ik-E(r,t)=0 (37)

for electromagnetic field.

Since, the vector dot product of wave vector k and electric field FE is zero, that means electric
field vibrates along perpendicular direction to the propagation direction k.

Similarly, starting from the expression B(r,t) = Bjexpli(k - 7 — wt)] and using the Maxwell
equation V - B(r,t) = 0, one can establish,

V.B(r,t)=ik-B(r,t) =0 (38)

So, it is obvious that magnetic field vibrates perpendicular to propagation direction k.

> Both electric field E(r,t) and magnetic field B(r,t) is perpendicular to propagation di-

rection k. So, the electromagnetic wave is transverse in nature.

To establish the relation between E(r,t) and B(r,t) in electromagnetic field, consider the

Maxwell equation,

V x E(r,t) = —%B(’r,t)

Before proceed to calculate curl of E(r,t), let’s be accustomed with Levi-Civita symbol £,

which helps to carry out vector cross product calculations in compact form. It is defined as,

1 5 for {Imn} = {123}, {231}, {312} (Clockwise combination)
Emn = —1 5 for {Iimn} = {132}, {321}, {213} (Anti-clockwise combination) (39)
0 ; for any repeated indices

The value of Levi-Civita symbol &;,,,, can be keep in mind with the help of the diagram 3. For
clockwise permutation of the indices it is +1 (shown in figure - 3(left)) and it is -1 for anti-clockwise

permutation (shown in figure - 3(right)). Suppose two vectors a and b are represented in Cartesian
Y ¥
3 2 3 2
\-( \)/

Figure 3:
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system (xy, z9,x3) as,

then using Levi-Civita symbol,

3
axb= " Epn Eiamb, (40)

I,m,n=1

Now, for electromagnetic wave, the electric field in Cartesian system (z1, zo, x3) represented by,

J/

3 3
E(’I",t) = Z@jEj(T,t) = Zilj on exp[z(k: r— wt)]
j=1 DS

j=1 Ej(r.t)

— (Z :%jEO]) expli(k - r — wt)]

J=1

Ey
= Eyexpli(k - 7 — wt)]

The vector differential operator in Cartesian system (1,2, z3) is given by,

S|
V=D g5
=1 !

So, with the help of equation (40) in Cartesian system (z1, zo, x3),

0
V x E(r,t) = Z Eimn :f:la—En(r,t) i En(r,t) = Ey,expli(k 7 — wt)]
:L'm
I,m,n=1
> 0
= Emmn T1Eon —— k-r—uwt
17;;:1 imn L1 oz, expli(k - r — wt)]
3
= Z Emn &1 (k) Eop expli(k « 7 — wt)] ; using Exercise - 3
Il,m,n=1 En?:,t)

3
=i > Ein BiknEn(r,t)

Il,m,n=1
NS >

(kxE)
V xE(r,t)=ikx E(r,t)

Similar expression for B(r,t) can be obtained in the same way. Finally, we have

VxE(rt =ikxE(rt) (41

V x B(r,t) =ik x B(r,t) )
%B(r, t) = %BO expli(k - r — wt)]

= —iwByexpli(k - r — wt)] (42)

0 :
EB(T’t) = —iwB(r,t)
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Therefore,
V x E(r t)——aB(r t)
) - (9t )
or, ikxE(rt)=1iwB(r,t) (43)
k 1 .
or, B(r,t) = — kx E(r,t)= - k x E(r,t) ; since w=ck
w c
Therefore, relation between E(r,t) and B(r,t) in electromagnetic wave,
1 -~
B(r,t) = - k x E(r,t) (44)
c
So,
o J AP 1 PO
k-B(r,t)=-k-(kx E(r,t))=-E(r,t)- (kxk)=0
c c

In this section we have established for electromagnetic wave,

k-B(rt)=0 and k-E(r,t)=0 and E(r,t)-B(r,t)=0

> That means, in electromagnetic wave, electric field, magnetic field and wave vector

are mutually perpendicular to each other.

1.5 Potential formulation

From elementary idea of electrostatics it is observed that curl of electrostatic field E(r) vanishes,
VXxE(r) =0

So that, electrostatic field can be derived from scalar potential ¢(r) in the form of E(r) = —V¢(r)
because curl of gradient always vanishes. Similar concept can be applied to the Maxwell’s relations
(8) to identify the potential functions from which electromagnetic fields E(r,t) and B(r,t) can be
derived.

Maxwell’s relation (8-ii) reads as,

V-.B(r,t)=0

Therefore, the B field can be derived from wvector potential A(r,t) in the following way,

B(r,t) =V x A(r,t) (45)

because divergence of curl always zero.

Now, from (8-iii),

0B 0

EFE=—=—— A
V x T at(V x A)
0A
\% E+—)=0
or, X ( + o )
Curl of gradient always zero, so, one can express,
0A
E+—=—
+ 5 Vo
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For time dependent phenomena, unlike to the static case,

OA(r,t
B(r.1) = ~vo(r,1) - A0 (46)
. So, the scalar potential ¢(r,t) and vector potential A(r,t) determine the electromagnetic

fields according to relations (45) and (46).

The fields do not correspond to unique potential functions. Potential functions are arbitrary
upto an additive constant which does not alter the fields. Potentials can be transformed in proper
way to new one such that fields remain invariant. Such transformations are known as gauge
transformation.

Consider the transformations,
A(r,t) = A'(r,t) = A(r,t) + VE(r, t)

and o(r,t) = ¢ (r,t) = ¢(r,t) 0

- & (’l“,t)

where £(7,t) is any arbitrary scalar function.

Under this transformation,
BB =VxA'=VXx(A+V{)=VxA+VxVE=VxXxA=B
0

because curl of gradient always zero.
The FE field transforms as,

AI
E(T7t) - E,(T‘,t) = _V¢,(T7t) - W
B 0A(r,t) oE(r,t) 0
=—-Vo(r,t) — oy +Vv ( 5 — atVf(T,t)
B 0A(r,t) 0 0
=—Vo(r,t) - o avf(ﬂﬂ + avf(ﬁt)
0A(r,t)
= — t —_——
Voir.t) - S0
= E<T7 t)
> Under the following transformations of vector potential and scalar potential,

A(r,t) — A'(r,t) = A(r,t) + VE(r, 1)

(47)
and,  o(r,t) = ¢ (r,t) = ¢(r,t) — % (r,1)

both electric field E(r,t) and magnetic field B(r,t) remain unchanged. Hence the dynamics of a
charged body moving in electromagnetic fields remain unaltered while the potentials transform in

the prescribed way of (47).

> Maxwell’s field equations can be re-expressed in term of potentials ¢(r,¢) and A(r,1).
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Consider the Maxwell equation,

p(r,t)
€0

V.-E(rt) =

Using expression for E from (46)

OA(r. )\ _ p(r.1)
V.-V t) — =
( ¢("°, ) @t ) €0
9 P
2 —(V-A)= -1 4
or, Vg + 8t<v ) ” (48)
Now consider another one Maxwell equation,
OF
VxB= MOJ"'MOEOE

Using expression for E and B from (46) and (45)

or, V X (V X A) = MOJ +M0602 (_V¢(T7t) . aA(ryt))

ot ot
0 0?A
or, V’A -V (V -A+ Mo€oa—(f> ~ Mot = —pod (49)
In Lorentz gauge,
99
V'A‘f‘,uo(foa =0 (50)
the equation (49) becomes,
1 02 1
2 L O _ C @ _
(V > 8752) A(r,t) pod (7, 1) ; since, ¢ e (51)

and equation (48) becomes

2 18_2 _ _p(ra t) . : _ 1
(V 290 o(r,t) = ” ; since, c¢= = (52)

Both scalar potential and the magnetic vector potential exhibit wave equation with source term.

1.5.1 Lagrangian of charged particle moving in electromagnetic field

Force experienced by a point charge ¢ moving in electromagnetic field (given by E(r,t) and B(r,t))
is described by Lorentz force,
F =¢(FE +v x B) (53)

From, section-1.5,
B(r,t) =V x A(r,t)
0A(r,t)
ot

Therefore, one can express Lorentz force in terms of potential functions,

and, E(r,t)=-Vo(r,t) —

F =q¢(E+v x B)

DA(r,t) (54)

=q |-Vo(rt) — T +v x (V x A(r,1))
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Now use the vector identity,

Viv-A)=vx(VxA)+AXx(Vxv)+(v-V)A+(A-V)v
generalized velocity v is independent of generalized position
so, space derivative of v vanishes

= Viwv-A)=vx (VxA)+(v-V)A

= vx(VxA)=Vw-A)—-(v-V)A

So, equation (54) becomes,

0A(r,t)

T +Vv-A) —(v-V)A (55)

Now, consider the Cartesian coordinate axes 1, x2, xs (which are identical to z, y, z).

A = A(’I" t) = A(ZEl,IQ,Ig,t)

= dA= Z dxl Adt

dA < 0A  0A

T a & o
dA 0A

A i

= - =(v-V)A+ BT
dA 0A

VA= — - —

- VA=

Now, substitute this expression of (v - V) A into equation (55) and get,

d

F=-V(gp—quv-A) - pr (¢A) (56)

This is the expression for electromagnetic force (in terms of potentials ¢(r,t) and A(r,t)) on a
moving charged particle.

The equation of motion for this force,

dv
- _F=—
mdt 0
0 dv +Vi(gp—qu-A)+ d —(¢qA) =0
For the j-th Cartesian component, equation of motion,
dv] 0 d
— 4+ — —qu-A)+ A;) =

The Lagrangian L(r,v,t) for the charged particle moving in electromagnetic field is to be iden-

tified such that the Euler-Lagrange equation of motion,

d(oLy oL
dt 82;]- axj_
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gives us the identical equation of motion expressed by (57).
To get the explicit expression for Lagrangian, we will rearrange the equation of motion (57) in
the form of Euler-Lagrange equation.

To rearrange the first term of (57) consider,

8UZ‘
8_vj = 05 and v? = ; Vv
Therefore,
dvj d o0 (1 d oT
_ | = —— [ = = —— 58
"t dtéhg ( ;E:UQ)> dt 0v; <2Tnv ) dt 0, (58)
The kinetic energy T has no explicit space dependency, therefore,
oT
— =0 ; for any of j =1,2,3
81’]’

So, second term of (57),

16— qv-A)= [T g —v- A)) (59)

oz, o,

The scalar potential ¢(r,t) and the vector potential A(r,t) does not have any velocity depen-
dency, therefore,
1)) 0A
—:O:' 7f f:172a3
o, o, or any of j

and

So, the third term of (57),

d d 0
Ligay=-22 (w~q§jm,):—%5—[w—v-An (60)
Now substitute several terms from (58), (59) and (60) into (57),
dor 0 d 0
aa—%—ﬁ—%[T—Q(éﬁ—v'Aﬂ _Eﬁ_vj[ q(¢—v-A)=0
d 0 0
o el (o= A= ST o= v A =0 (o)

d (0L oL
or, — (—) ——=0 ; the Fuler-Lagrange equation
an 8@

Here, we able to find out the appropriate Lagrangian from the equation of motion as,

L=T—q(¢—v-A) (62)

This is the Lagrangian for charged particle moving in electromagnetic field.

The potential U is velocity dependent

U=q(p—v-A)
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1.5.2 Transformation of Lagrangian due to gauge transformation

It has been discussed that under the transformation of ¢(r,t) and A(r,t) according to (47), the
electromagnetic fields E(r,t) and B(r,t) remain unaltered. So, the Lorentz force expression (53)
also to be kept unchanged. Let’s check what happens to the Lagrangian due to the transformation

of potentials,
A(r,t) = A'(r,t) = A(r,t) + VE(r, t)
and, (1) = (1) = 6l 1) — o £l
The transformed Lagrangian,

L'(r,vt)=T—q(¢ —v- A"

:T—q(¢—%f(r,t}—zwA—v-Vé(r,t))

=T—ql¢p—v-A)- ('v - VE(r,t) + %f(r,t))

-~

:L_Gpvanw+%ﬂnﬂ)
Now,

§=E&(r,t) =¢(1, 22,23, 1)
3
= di(r.t)=)_ %dwi + %dt

=1

de <~ 06 08 0
= %—izlvia—xi—l-a—U'V£<rvt>+§€(r7t)

So, from the last expression of (63),
de(r.1)

dt
The Lagrangian is transformed such that it is arbitrary upto an additive factor which is total time
derivative of a function of space and time only (here £(r,¢)). From the idea of Lagrangian dynamics,
it is known that such an addition does not affect the Euler-Lagrange equation of motion. Therefore,

gauge transformations of potentials do not alter the force acting on charged particle and hence the

L'=1L-

equation of motion remain unchanged.

1.5.3 Hamiltonian

The Lagrangian for charged particle moving in electromagnetic fields is given by relation (62) as,
L=T—qlo(r,t) — v A(r,1)]

3 3
1
= §m ; vv; —qo(r,t) + ¢ ; v; Ai(r,t)

—_——— —_——
T v-A
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Now the j—th component of generalized momentum,

0L
b= (9113'
o (1 & 3
= 8_@] <§m ;Uﬂ)i —qo(r,t) + (J;%Ai<7"a t))
3 3 o,
= m; 00 + ¢ ; A;(r,t)0;; ; since 8_1; = 0;j
p; = mv; + qA;(r,t)
The generalized momentum,
p=mv + qA(r,1) (64)
where,
mwv — mechanical momentum due to motion of charged particle.
qA(r,t) — field momentum carried by electromagnetic fields.
The Hamiltonian can be formulated as,
3
H= Zpivi — L ; Basic definition
i=1
=p-v—-T+qp—qv-A ; Lagrangian expression from (62)
1
Now put from equation (64), v = —(p — ¢A)
m
1 1 q
H=—p-(p—qA) —5-(p—qA)’+q0— —(p—qA)- A
m 2m m
1
— _— (p—qgA)?
5 (P~ qA)" + o

So, the Hamiltonian of charged particles moving in electromagnetic field,

Hr,p.) = 5[p — gAr. ) + 46(r. 1) (65)

2 Energy conservation : Poynting’s theorem

Energy conservation is one of the fundamental laws of physics. If total energy of a system is
increased by some amount that means the same amount of energy is flowed into the system and on
the other hand when some amount of energy is flowed out form system then same amount of energy
of the system will be decreased. The energy conservation must leads to a continuity equation in

the form of,

ou
E—FV-S—O

where, u is the energy density, i.e; energy per unit volume. S is the energy flux density, i.e; energy
flowing per unit time across unit surface along the direction of energy flow.
Following, we discuss the energy conservation phenomena in electrodynamics and also going to

develop the continuity equation associated with the energy conservation.
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Consider a region of volume V' enclosed by surface R, in which there are some charges of charge
density p(r,t) and currents of current density J(7,t); both charge density and current density are
space-time dependent variable. Furthermore, there will be electric field E(r,t) and magnetic field
B(r,t). This electromagnetic field originates from the charges and currents present within the
region plus some external sources can give rise to fields within the region of interest R.

Suppose, small volume element d7 within the region is moving with velocity v.

Now, total charge contained in the volume element is dqg = p(7,t)dr, then Lorentz force acting

on the small element is,
F=dgy(E+vxB)=(E+vx B)p(r,t)dr

If within small time interval dt, the volume element is displaced by dl = wvdt, then work done on

the whole system is,

dW:/F-dl
1%
or, dW:/‘/g(E+1ix B)dr - vdt
4 dl
or, dW:/pE~vdet ; since, (vxB)-v=0
%
or, dW:/E°JdT dt ; since, J = pv
1%
. OF
Now put J form Maxwell equation : V x B = poJ + MOEOE
dw 1 oFE
[ E(2VxB-¢2) d
or, 0 y (MOVX €0 8t> T
d 1 d
or, —W:—/E-(VxB)dT—— OE2dr  isince, E2=E-E
dt Ho Jv dt V2
Now use the vector identity : V-(Ex B)=B:(Vx E)—E-(V x B)
dw 1/ 1 d [ €,
or, —=— | B-(VxE)dr—— | V- (ExB) dr—— | —E°dr
dt Ho Jv ( ) Ko Jv ( ) dt Jy 2
. 0B
Now use Maxwell equation : V x E = ~ 5
d 1 B 1 d
or, w1 B'a—dT—— V- (ExB) dr — — Op? gr
dt o Jv ot to Jv dat Jy 2
dW d €0 o I 1
o S (Y2 —B)dr—- — | V- (ExB)d 66
o dt dt V(2 +2M0 )T o Jv (B x Bldr (66)

The work done on the system will be stored as mechanical energy. If ween (7, 1) is the mechanical

energy density of the system of charges, then total mechanical energy will be equal to,

/ Umech (T, 1) dT
1%

Rate of work done must be equal to the rate of change of mechanical energy, therefore,

dW d
—_— = — t) d
dt dt/vumech(rv ) T
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So, the equation (66) becomes,

0 € o 1 2) ( 1 )}
— Upeeh + =+ —B° | +V - —ExB)|dr=0 67
/v [375 ( " 2110 1o (67)

This is true for any arbitrary volume, so, we have continuity equation in the form of,

0
Continuity equation : 8—? +V-.-8=0

1
where, Poynting vector : S = —(E x B)
Ho (68)
where, u = Upeen + Uem

1 1
Electrmagnetic energy density : e, = 3 (€0E2 + —BQ)
Ho

> Poynting’s Theorem : The work on the charges by the electromagnetic force is equal the

to decrease in energy stored in the field, less the energy that flowed out through the surface.*

Exercise 4. Suppose Ae®® 4 Be'?* = Ce® for some nonzero constants A, B, C, «, 3, v and for
all z. Then show that a = =~y and A+ B=C
Solution :

The relation is valid for all z, so, at z = 0,

Differentiating the relation,
i Ae’™® 4+ i Bt = jyCen®
at x =0: ’aA—i—BB:’yC‘

Differentiating again,
— 2AeiT _ BB — 20
At z =0,
o*A+ B =~C
or, C(a®?A+ 3°B) = (vC)? : multiplying both side by C'

or, (A+ B)(a*A + B%B) = (aA + BB)? ; using expression for C' and vC
or, (aA)*+ (BB)*+ (a® + B*)AB — (eA+ 3B)* =0
or, (@®+ % —2aB8)AB =0
or, (a — B)*PAB =0
or, ;since A, B #0
We have,
aA+ B =~C
or, a(A+ B) =~C ; since o = 3 (69)

or, ;since A+ B=C

4Taken from D. J. Griffiths, Introduction to Electrodynamics, 3rd Eds., Prentice Hall (1999).
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