Partial Differential Equation
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INTRODUCTION

Many of the problems of mathematical physics involve the solution of partial dif-
ferential equations. The same partial differential equation may apply to a variety
of physical problems; thus the mathematical methods which you will learn in this
chapter apply to many more problems than those we shall discuss in the illustrative
examples. Let us outline the partial differential equations we shall consider, and
the kinds of physical problems which lead to each of them.

(1.1)  Laplace’s equation Vu =0

The function u may be the gravitational potential in a region containing no mass,
the electrostatic potential in a charge-free region, the steady-state temperature (that
is, temperature not changing with time) in a region containing no sources of heat,
or the velocity potential for an incompressible fluid with no vortices and no sources
or sinks.

(1.2) Poisson’s equation Viu = f(z,y,2)

The function u may represent the same physical quantities listed for Laplace’s
equation, but in a region containing mass, electric charge, or sources of heat or
fluid, respectively, for the various cases. The function f(x,y, z) is called the source
density; for example, in electricity it is proportional to the density of the electric
charge.

. . . 1 Ou
(1.3)  The diffusion or heat flow equation Vu = peirT
«

Here u may be the non-steady-state temperature (that is, temperature varying
with time) in a region with no heat sources; or it may be the concentration of a
diffusing substance (for example, a chemical, or particles such as neutrons). The
quantity a? is a constant known as the diffusivity.

1 0%u

1.4) Wi ti Viu=——
(1.4) ave equation U= 5o

Here u may represent the displacement from equilibrium of a vibrating string
or membrane or (in acoustics) of the vibrating medium (gas, liquid, or solid); in
electricity © may be the current or potential along a transmission line; or u may
be a component of E or B in an electromagnetic wave (light, radio waves, etc.).
The quantity v is the speed of propagation of the waves; for example, for light in
a vacuum it is ¢, the speed of light, and for sound waves it is the speed at which
sound travels in the medium under consideration. The operator V2 — C%% is called
the d’Alembertian.
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(1.5)  Helmholtz equation  V2F +k?F =0

As you will see later, the function F' here represents the space part (that is, the
time-independent part) of the solution of either the diffusion or the wave equation.
. , n* oo L0
(1.6) Schrédinger equation — — VU + VUV =ih—V
2m ot

This is the wave equation of quantum mechanics. In this equation, h is Planck’s
constant divided by 27, m is the mass of a particle, i = v/—1, and V is the potential
energy of the particle. The wave function W is complex, and its absolute square is
proportional to the position probability of the particle.

We shall be principally concerned with the solution of these equations rather
than their derivation. If you like, you could say that it is true experimentally that
the physical quantities mentioned above satisfy the given equations. However, it is
also true that the equations can be derived from somewhat simpler experimental
assumptions. Let us indicate briefly an example of how this can be done. In
Chapter 6, Sections 10 and 11, we considered the flow of a fluid. We showed
(Chapter 6, Problem 10.15) that V - v = 0 for an incompressible fluid in a region
containing no sources or sinks. If it is also true that there are no vortices (that is, the
flow is irrotational), then curl v = 0, and v can be written as the gradient of a scalar
function: v = Vu. Combining these two equations, we have V - Vu = V2u = 0.
The function u is called the velocity potential and we see that (under the given
conditions) it satisfies Laplace’s equation as we claimed. A few more examples of
such derivations are outlined in the problems.

In the following sections, we shall consider a number of physical problems to
illustrate the very useful method of solving partial differential equations known as
separation of variables (no relation to the same term used in ordinary differential
equations, Chapter 8). In Sections 2 to 4, we consider problems in rectangular
coordinates leading to Fourier series solutions—problems similar to those solved by
Fourier. In later sections, we consider use of other coordinate systems (cylindrical,
spherical) leading to solutions using Legendre or Bessel series.
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21.1 Separation of variables: the general method

Suppose we seek a solution u(x,y,z,t) to some PDE (expressed in Cartesian
coordinates). Let us attempt to obtain one that has the product form?

u(x,y,z,t) = X(x)Y(y)Z(z)T(¢). (21.1)

A solution that has this form is said to be separable in x, y, z and t, and seeking
solutions of this form is called the method of separation of variables.
As simple examples we may observe that, of the functions

(i) xyz2sinbt, (i) xy +zt, (i) (x* + y?)z cos wt,

(1) is completely separable, (ii) is inseparable in that no single variable can be
separated out from it and written as a multiplicative factor, whilst (iii) is separable
in z and ¢ but not in x and y.

When seeking PDE solutions of the form (21.1), we are requiring not that
there is no connection at all between the functions X, Y, Z and T (for example,
certain parameters may appear in two or more of them), but only that X does
not depend upon y, z, t, that Y does not depend on x, z, t, and so on.

For a general PDE it is likely that a separable solution is impossible, but
certainly some common and important equations do have useful solutions of
this form, and we will illustrate the method of solution by studying the three-
dimensional wave equation

1 0%u(r)
Viur) = = .
(x) 2 0t
We will work in Cartesian coordinates for the present and assume a solution
of the form (21.1); the solutions in alternative coordinate systems, e.g. spherical
or cylindrical polars, are considered in section 21.3. Expressed in Cartesian
coordinates (21.2) takes the form

*u  0*u  0*u 1 0%u

(21.2)

= _— 21.3
Tt A (21.3)
substituting (21.1) gives
a>x a’y d*Z 1 a>T
—YZT+X—ZT+ XY —T=—=XY/Z—
dx? + dy? + dz? 2 de?”’
which can also be written as
1
X'YZT +XY"ZT+XYZ'T = C—2XYZT", (21.4)
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where in each case the primes refer to the ordinary derivative with respect to the
independent variable upon which the function depends. This emphasises the fact
that each of the functions X, Y, Z and T has only one independent variable and
thus its only derivative is its total derivative. For the same reason, in each term
in (21.4) three of the four functions are unaltered by the partial differentiation
and behave exactly as constant multipliers.

If we now divide (21.4) throughout by u = XYZ T we obtain
X// Y// Z// 1 T//
xtyTz"aT

This form shows the particular characteristic that is the basis of the method of
separation of variables, namely that of the four terms the first is a function of x
only, the second of y only, the third of z only and the RHS a function of ¢ only
and yet there is an equation connecting them. This can only be so for all x, y, z
and ¢ if each of the terms does not in fact, despite appearances, depend upon the
corresponding independent variable but is equal to a constant, the four constants
being such that (21.5) is satisfied.

(21.5)

Since there is only one equation to be satisfied and four constants involved,
there is considerable freedom in the values they may take. For the purposes of
our illustrative example let us make the choice of —I?, —m?, —n?, for the first
three constants. The constant associated with ¢=>T"”/T must then have the value
—p2 = —(P +m? +n?).

Having recognised that each term of (21.5) is individually equal to a constant
(or parameter), we can now replace (21.5) by four separate ordinary differential
equations (ODEs):
iz 1/ 1 "
XY = 2, YT = —m?, 27 = —n?, clzTT = — 1. (21.6)
The important point to notice is not the simplicity of the equations (21.6) (the
corresponding ones for a general PDE are usually far from simple) but that, by
the device of assuming a separable solution, a partial differential equation (21.3),
containing derivatives with respect to the four independent variables all in one
equation, has been reduced to four separate ordinary differential equations (21.6).
The ordinary equations are connected through four constant parameters that
satisfy an algebraic relation. These constants are called separation constants.
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Th'e gener;ll solutions of the equations (21.6) can be deciuced straightforwardly
and are

X(x) = Aexp(ilx) + B exp(—ilx),
Y (y) = Cexp(imy) + D exp(—imy),

(21.7)
Z(z) = E exp(inz) + F exp(—inz),
T(t) = Gexp(icut) + H exp(—icut),
where A, B,..., H are constants, which may be determined if boundary condtions

are imposed on the solution. Depending on the geometry of the problem and
any boundary conditions, it is sometimes more appropriate to write the solutions
(21.7) in the alternative form

X(x) = A’ coslx + B'sinx,
Y (y) = C'cosmy + D' sinmy,
() y . y (2138)
Z(z) = E'cosnz + F'sinnz,
T(t) = G’ cos(cut) + H' sin(cput),
for some different set of constants A’, B’,..., H'. Clearly the choice of how best

to represent the solution depends on the problem being considered.
As an example, suppose that we take as particular solutions the four functions

X(x) =exp(ilx),  Y(y) =exp(imy),
Z(z) = exp(inz), T (t) = exp(—icput).
This gives a particular solution of the original PDE (21.3)

u(x, y, z,t) = exp(ilx) exp(imy) exp(inz) exp(—icput)
= expli(lx + my 4+ nz — cut)],

» Use the method of separation of variables to obtain for the one-dimensional diffusion
equation

o*u  ou

a solution that tends to zero as t — oo for all x.

Here we have only two independent variables x and ¢t and we therefore assume a solution
of the form

u(x,t) = X(x)T(t).
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Substituting this expression into (21.9) and dividing through by u = X T (and also by k)
we obtain
X// B T/
X kT
Now, arguing exactly as above that the LHS is a function of x only and the RHS is a
function of ¢ only, we conclude that each side must equal a constant, which, anticipating
the result and noting the imposed boundary condition, we will take as —A2. This gives us
two ordinary equations,

X"+ 22X =0, (21.10)
T + 2°kT =0, (21.11)
which have the solutions

X(x) = Acos Ax + Bsin ix,

T(t) = C exp(—i>kt).
Combining these to give the assumed solution u = X T yields (absorbing the constant C
into A and B)

u(x,t) = (A cos Ax + B sin Ax) exp(—A«t). (21.12)

In order to satisfy the boundary condition u — 0 as t — oo, A’k must be > 0. Since «
is real and > 0, this implies that 4 is a real non-zero number and that the solution is
sinusoidal in x and is not a disguised hyperbolic function; this was our reason for choosing
the separation constant as —/>. <«

» Use the method of separation of variables to obtain a solution for the two-dimensional
Laplace equation,
*u  0%u

w0 (21.13)

If we assume a solution of the form u(x, y) = X(x)Y (y) then, following the above method,
and taking the separation constant as A%, we find

X" =X, Y =Y.
Taking 4> as > 0, the general solution becomes
u(x,y) = (Acosh Ax + B sinh Ax)(C cos 1y + D sin 1y). (21.14)

An alternative form, in which the exponentials are written explicitly, may be useful for
other geometries or boundary conditions:

u(x,y) = [Aexp Ax + Bexp(—Ax)](C cos Ly + D sin Ly), (21.15)

with different constants A and B.

If /2 < 0 then the roles of x and y interchange. The particular combination of sinusoidal
and hyperbolic functions and the values of 4 allowed will be determined by the geometrical
properties of any specific problem, together with any prescribed or necessary boundary
conditions. «
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. LAPLACE'S EQUATION; STEADY-STATE
TEMPERATURE IN A RECTANGULAR PLATE

We want to solve the following problem: A long rectangular metal plate has its two
long sides and the far end at 0° and the base at 100° (Figure 2.1). The width of
the plate is 10 cm. Find the steady-state temperature distribution inside the plate.
(This problem is mathematically identical to the problem of finding the electrostatic
potential in the region 0 < x < 10,y > 0, if the given temperatures are replaced by
potentials—see, for example, Jackson, 3rd edition, p.73)

To simplify the problem, we shall assume at first
that the plate is so long compared to its width that y
we may make the mathematical approximation that
it extends to infinity in the y direction. It is then
called a semi-infinite plate. This is a good approxi-
mation if we are interested in temperatures not too
near the far end.

The temperature T satisfies Laplace’s equation
inside the plate where there are no sources of heat, _ 10cm
that is,

T=0°

Y

o*T  9*T "

2.1 V2T =0 p — f .
(2.1) ot Ox? T dy? T = 100° *

We have written V? in rectangular coordinates
because the boundary of the plate is rectangular Figure 2.1

and we have omitted the z term because the plate is in two dimensions. To solve
this equation, we are going to try a solution of the form

(2.2) T(z,y) = X(2)Y (y),

where, as indicated, X is a function only of x, and Y is a function only of y.
Immediately you may raise the question: But how do we know that the solution is
of this form? The answer is that it is not! However, as you will see, once we have
solutions of the form (2.2) we can combine them to get the solution we want. [Note
that a sum of solutions of (2.1) is a solution of (2.1).] Substituting (2.2) into (2.1),
we have
d*X d?Y

2.3 Y X =
(2.3) dx? * dy?
(Ordinary instead of partial derivatives are now correct since X depends only on =z,
and y depends only on y.) Divide (2.3) by XY to get

LPX 1Y
X de?2 Y dy?

0.

0.

(2.4)
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The next step is really the key to the process of separation of variables. We are
going to say that each of the terms in (2.4) is a constant because the first term is
a function of x alone and the second term is a function of y alone. Why is this

correct? Recall that when we say u = sint is a solution of 4 = —u, we mean that
if we substitute u = sint into the differential equation, we get an identity (i = —u
becomes — sint = — sint), which is true for all values of . Although we speak of an

equation, when we substitute the solution into a differential equation, we have an
identity in the independent variable. (We made use of this fact in series solutions
of differential equations in Chapter 12, Sections 1 and 2.) In (2.1) to (2.4) we have
two independent variables, x and y. Saying that (2.2) is a solution of (2.1) means
that (2.4) is an identity in the two independent variables x and y [recall that (2.4)
was obtained by substituting (2.2) into (2.1)]. In other words, if (2.2) is a solution
of (2.1), then (2.4) must be true for any and all values of the two independent
variables z and y. Since X is a function only of x and Y of y, the first term of
(2.4) is a function only of x and the second term is a function only of y. Suppose
we substitute a particular x into the first term; that term is then some numerical
constant. To have (2.4) satisfied, the second term must be minus the same constant.
While x remains fixed, let y vary (remember that = and y are independent). We
have said that (2.4) is an identity; it is then true for our fixed x and any y. Thus
the second term remains constant as y varies. Similarly, if we fix y and let = vary,
we see that the first term of (2.4) is a constant. To say this more concisely, the
equation f(x) = g(y), with  and y independent variables, is an identity only if
both functions are the same constant; this is the basis of the process of separation
of variables. From (2.4) we then write
1 d?’X 1 d?Y
(2.5) X a2 - —?@ = const. = —k?, k>0, or
X"=-k’X and Y'=FkY.

The constant k? is called the separation constant. The solutions of (2.5) are
sin kx, ek,
(2.6) X={ Y={_@

cos kx,

and the solutions of (2.1) [of the form (2.2)] are

eky sin kx
(2.7) T=XY = { e~ ky } { cos kx }
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None of the four solutions in (2.7) satisfies the given boundary temperatures. What
we must do now is to take a combination of the solutions (2.7), with the constant
k properly selected, which will satisfy the given boundary conditions. [Any linear
combination of solutions of (2.1) is a solution of (2.1) because the differential equa-
tion (2.1) is linear; see Chapter 3, Section 7, and Chapter 8, Sections 1 and 6.] We
first discard the solutions containing e*¥ since we are given T — 0 as y — oco. (We
are assuming k > 0; see Problem 5.) Next we discard solutions containing cos kx
since T = 0 when = = 0. This leaves us just e *sinkz, but the value of k is
still to be determined. When x = 10, we are to have T' = 0; this will be true if

sin (10k) = 0, that is, if &k = nw /10 for n = 1,2,---. Thus for any integral n, the
solution

2.8 T = e "m/10gin T2

(2.8) e sin —5

satisfies the given boundary conditions on the three T' = 0 sides.

Finally, we must have T" = 100 when y = 0; this condition is not satisfied by
(2.8) for any n. But a linear combination of solutions like (2.8) is a solution of (2.1);
let us try to find such a combination which does satisfy 7" = 100 when y = 0. In
order to allow all possible n’s we write an infinite series for 7', namely

(2.9) T = ; bpe~ "™/ 10 gin %.

For y = 0, we must have 7" = 100; from (2.9) with y = 0 we get

> . NTXx
(2.10) Ty—o = ; bn sin == = 100.

Multiply both side of (2.10) by sin (%) and perform the following integration within 0 < x < 10.

0, ifn' #n,

f sin(nmy/a) sin(n'my/a)dy = 4
0 B ifn" =n.

0, ifniseven

f sin(nmy/a)dy = -4 (1 — cosnm) =
0 I 22 i nis odd

nmw

2 [ 2 10 400 044
(2.11) by = —/ f(z)sin == dz = —/ 100sin 2L gy = § mw> 04T
[ Jo [ 10 J, 10 0, even n.

10
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Then (2.9) becomes

400 T 1 3rx
— 7y/10 s 27 Ze3my/10 5 20 A
(2.12) T (e sin 75 + 5 € sin —= + > .

Equation (2.12) can be used for computation if 7y/10 is not too small since then
the series converges rapidly. (See also Problem 6.) For example, at z = 5 (central
line of the plate) and y = 5, we find

4 1
(2.13) A <e—”/2 sing + §6_3W/2 sin 37% + - > ~ 26.1°.
m

Taken from D. |. Griffiths

Example 3.4. Two infinitely-long grounded metal plates, again at y = 0 and
y = a, are connected at x = +b by metal strips maintained at a constant potential
Vo, as shown in Fig. 3.20 (a thin layer of insulation at each corner prevents them
from shorting out). Find the potential inside the resulting rectangular pipe.

Solution
Once again, the configuration is independent of z. Our problem is to solve
Laplace’s equation

3’V 9V

il SR L
dx? i dy? |

subject to the boundary conditions
i) V =0wheny =0,
(ii)) V =0wheny =a,

(i11) V = V,y when x = b,
@iv) V =V, when x = —b.

(3.40)

The argument runs as before, up to Eq. 3.27:

V(x,y) = (A" + Be ™) (Csinky + D cos ky).

11
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=Y

FIGURE 3.20

This time, however, we cannot set A = 0; the region in question does not
extend to x = 00, so ek* is perfectly acceptable. On the other hand, the situa-
tion is symmetric with respect to x, so V(—x, y) = V(x, y), and it follows that
A = B. Using

& 4+ e7* = 2 coshkx,
and absorbing 2A into C and D, we have
V(x,y) = coshkx (Csinky + D cosky).
Boundary conditions (i) and (i1) require, as before, that D = 0 and k = nm/a, so
V(x,y) = Ccosh(nmx/a) sin(nwy/a). (3.41)

Because V(x, y) is even in x, it will automatically meet condition (iv) if it fits
(111). It remains, therefore, to construct the general linear combination,

V(x,y) =Y _C,cosh(nmx/a) sin(nry/a),

n=1

and pick the coefficients C, in such a way as to satisfy condition (ii1):

V(b,y) =) C,cosh(nmb/a) sin(nmy/a) = V.

n=1

12
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To obtain C,, we can use same trick as applied before. Multiply both sides by appropriate
sin() function an then integrate.

0, if n 1s even

C, cosh(nmb/a) = AV,
o if n is odd

niw

Conclusion: The potential in this case is given by

_ 4 l cosh(nmx/a) . ,
Vix,y) = Z ot b/ sin(nmy/a). (3.42)

Example 3.5. An infinitely long rectangular metal pipe (sides a and b) is
grounded, but one end, at x = 0, is maintained at a specified potential Vy(y, z),
as indicated in Fig. 3.22. Find the potential inside the pipe.

Yt v=0
o
V{)(‘V-, Z) - "L \ ﬂ
by 2
{1
2 V=0
FIGURE 3.22

Solution
This is a genuinely three-dimensional problem,

9’V 3%V 3*V
= (), 343
dx2 + dy2 = 97> 3:45)

13
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subject to the boundary conditions

(i) V =0wheny =0,
(i) V =0wheny =a,
(i1) V =0whenz =0,

(iv) V =O0whenz=b, ’ (3.44)
v) V—->0asx — o0,
(vi) V =V(y,z) whenx =0. |
As always, we look for solutions that are products:
Vx,y,2) = X(X)Y(y)Z(2). (3.45)
Putting this into Eq. 3.43, and dividing by V, we find
ldeJr 1d2y+1d’—’z_0
Xdx? Ydy? Zdz2
It follows that
L& C Lg.F C | g2 C ith C; +C,+C3=0
—_—— = ¢ TR y o = y W1 — U,
Xde2 VYd?r FZzdz PR e
Our previous experience (Ex. 3.3) suggests that C; must be positive, C, and Cs
negative. Setting C; = —k% and C; = —I?, we have C; = k% + I2, and hence
d*X d*y d*z
— =k +PX, — =-kY, — =-I"Z. 3.46
dx? &+ 1) dy? dz? (3.40)

Once again, separation of variables has turned a partial differential equation
into ordinary differential equations. The solutions are

X(x) — Aem,t _I_ Be—\/kz——hﬁx,
Y(y) = Csinky + Dcosky,

Z(z) = Esinlz + Fcoslz.

Boundary condition (v) implies A = 0, (i) gives D = 0, and (ii1) yields F = 0,
whereas (ii) and (iv) require that k = nw/a and | = mm /b, where n and m are
positive integers. Combining the remaining constants, we are left with

V(x,y,2) = Ce ™V W +m/brx gin(nwy /a) sin(mmz/b). (3.47)

14
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This solution meets all the boundary conditions except (vi). It contains two un-
specified integers (n and m), and the most general linear combination is a double
sum:

o0 o0
Vix,y,2) = Z Z Chpme "V (n/a)*+(m/b)* x sin(nmy/a) sin(mmz/b). (3.48)

n=1 m=1

We hope to fit the remaining boundary condition,

V(©0,y.2) = Y Y Cumsin(nmy/a) sin(mmz/b) = Vo(y.2).  (3.49)

n=1 m=1

by appropriate choice of the coefficients C, ,,. To determine these constants, we
multiply by sin(n'mwy/a) sin(m’'mwz/b), where n’ and m’ are arbitrary positive
integers, and integrate:

0o 00 a b
> Cum / sin(nwry/a) sin(n'wy/a)dy / sin(mmz/b) sin(m'mz/b) dz
0 0

n=1 m=1

a b
= / f Vo(y, z)sin(n'my/a) sin(m'mz/b)dy dz.
0o Jo

Quoting Eq. 3.33, the left side is (ab/4)C, ', SO

4 a b
Ciw = —f / Vo(y, z) sin(nmy/a) sin(mmz/b)dy dz. (3.50)
ab o Jo
Equation 3.48, with the coefficients given by Eq. 3.50, is the solution to our
problem.

For instance, if the end of the tube is a conductor at constant potential Vj,

4V0 a . b .
G = —— sin(nry/a)dy sin(mmz/b)dz
ab 0 0

0, if n or m 1is even,

= (3.51)

16V} )
. if n and m are odd.
2nm

In this case

16V «— | e
Vix,y, z) = . Z — TN W@+ /D?X Gin(mry /a) sin(mmz/b).

2
T nm
n.m=1,3,5...

o~
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21.3 Separation of variables in polar coordinates

So far we have considered the solution of PDEs only in Cartesian coordinates,
but many systems in two and three dimensions are more naturally expressed
in some form of polar coordinates, in which full advantage can be taken of
any inherent symmetries. For example, the potential associated with an isolated
point charge has a very simple expression, q/(4megr), when polar coordinates are
used, but involves all three coordinates and square roots when Cartesians are
employed. For these reasons we now turn to the separation of variables in plane
polar, cylindrical polar and spherical polar coordinates.

Most of the PDEs we have considered so far have involved the operator V2, e.g.
the wave equation, the diffusion equation, Schrodinger’s equation and Poisson’s
equation (and of course Laplace’s equation). It is therefore appropriate that we
recall the expressions for V> when expressed in polar coordinate systems. From
chapter 10, in plane polars, cylindrical polars and spherical polars, respectively,

we have
V2 %% (r2%> - slinea% (sin 90%) + Silnzg%. (21.25)

Of course the first of these may be obtained from the second by taking z to be
identically zero.

21.3.1 Laplace’s equation in polar coordinates

The simplest of the equations containing V2 is Laplace’s equation,
VZu(r) = 0. (21.26)

Since it contains most of the essential features of the other more complicated
equations, we will consider its solution first.

16
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Laplace’s equation in plane polars

Suppose that we need to find a solution of (21.26) that has a prescribed behaviour
on the circle p = a (e.g. if we are finding the shape taken up by a circular drumskin
when its rim is slightly deformed from being planar). Then we may seek solutions
of (21.26) that are separable in p and ¢ (measured from some arbitrary radius
as ¢ = 0) and hope to accommodate the boundary condition by examining the
solution for p = a.

Thus, writing u(p, ) = P(p)®(¢) and using the expression (21.23), Laplace’s
equation (21.26) becomes

q’i( 0P> Pa2<1)_0

pdp \" dp p? 0d?
Now, employing the same device as previously, that of dividing through by
u = P® and multiplying through by p?, results in the separated equation

p 0 0P 1 0°®
S \P— |+t x57 =0
P dp aop ONG10)

Following our earlier argument, since the first term on the RHS is a function of
p only, whilst the second term depends only on ¢, we obtain the two ordinary

equations
d dP
Ll (,)_dp) _ 2 (2127)
1 d*®

where we have taken the separation constant to have the form n? for later
convenience; for the present, n is a general (complex) number.

Let us first consider the case in which n # 0. The second equation, (21.28), then
has the general solution

®(¢p) = Aexp(ing) + B exp(—ing). (21.29)
Equation (21.27), on the other hand, is the homogeneous equation
p’P" + pP' —n’P =0,

which must be solved either by trying a power solution in p or by making the
substitution p = expt as described in subsection 15.2.1 and so reducing it to an
equation with constant coefficients. Carrying out this procedure we find

P(p)=Cp"+Dp™". (21.30)
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Returning to the solution (21.29) of the azimuthal equation (21.28), we can
see that if @, and hence u, is to be single-valued and so not change when ¢
increases by 2n then n must be an integer. Mathematically, other values of n are
permissible, but for the description of real physical situations it is clear that this
limitation must be imposed. Having thus restricted the possible values of n in
one part of the solution, the same limitations must be carried over into the radial
part, (21.30). Thus we may write a particular solution of the two-dimensional
Laplace equation as

u(p, ) = (Acosng + Bsinngp)(Cp" + Dp™"),

where A, B, C, D are arbitrary constants and » is any integer.

We have not yet, however, considered the solution when n = 0. In this case,
the solutions of the separated ordinary equations (21.28) and (21.27), respectively,
are easily shown to be

®(¢) = Ap + B,
P(p)=Clnp+D.

But, in order that u = P® is single-valued, we require A = 0, and so the solution
for n = 0 is simply (absorbing B into C and D)

u(p,¢) =Clnp+ D.

Superposing the solutions for the different allowed values of n, we can write
the general solution to Laplace’s equation in plane polars as

“(,0, ¢) - (CO lnp + DO) + Z(An COsS nd) + B, sin n¢)(cnpn + an—n),
- (21.31)

where n can take only integer values. Negative values of n have been omitted
from the sum since they are already included in the terms obtained for positive
n. We note that, since Inp is singular at p = 0, whenever we solve Laplace’s
equation in a region containing the origin, Cyp must be identically zero.

18
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Laplace’s equation in cylindrical polars

Passing to three dimensions, we now consider the solution of Laplace’s equation
in cylindrical polar coordinates,

10 ou 1 0*u  0%u
57 05 e
We note here that, even when considering a cylindrical physical system, if there
is no dependence of the physical variables on z (i.e. along the length of the
cylinder) then the problem may be treated using two-dimensional plane polars,
as discussed above.

For the more general case, however, we proceed as previously by trying a
solution of the form

=0. (21.32)

ulp, ¢,z) = P(p)®(p)Z(z),
which, on substitution into (21.32) and division through by u = P®Z, gives
Ld(dpPy 1 d2®+1d22_0
Ppdp \"dp ) T0p2dpr T Zdz2 T

The last term depends only on z, and the first and second (taken together) depend
only on p and ¢. Taking the separation constant to be k?, we find

1d*z

Z dz2
1 d [ dP 1 &0
— — (p— )+ ——+K=0.
Ppdp (p dp) " Dp? dp? -

The first of these equations has the straightforward solution
Z(z) = Eexp(—kz)+ Fexpkz.

Multiplying the second equation through by p?, we obtain
p d dpP 1do
—— | p— ——— +k“p°=0
P dp (,)dp) ToapE TR0

in which the second term depends only on @ and the other terms depend only
on p. Taking the second separation constant to be m?, we find

2
é% = —m?, (21.33)
d [ dP
" <p%) + (k*p> —m*)P = 0. (21.34)
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The equation in the azimuthal angle ¢ has the very familiar solution

®(¢p) = C cosmep + D sinma.

As in the two-dimensional case, single-valuedness of u requires that m is an
integer. However, in the particular case m = 0 the solution is

®(¢) = C¢ + D.

This form is appropriate to a solution with axial symmetry (C = 0) or one that is
multivalued, but manageably so, such as the magnetic scalar potential associated
with a current I (in which case C =1/(2n) and D is arbitrary).

Finally, the p-equation (21.34) may be transformed into Bessel’s equation of
order m by writing u = kp. This has the solution

P(p) = AJm(kp) + BYn(kp).

The properties of these functions were investigated in chapter 16 and will not
be pursued here. We merely note that Y,,(kp) is singular at p = 0, and so, when
seeking solutions to Laplace’s equation in cylindrical coordinates within some
region containing the p = 0 axis, we require B = 0.

The complete separated-variable solution in cylindrical polars of Laplace’s
equation V2u = 0 is thus given by

u(p, ¢, z) = [AJu(kp) + BY,(kp)][C cosmep + D sinme][E exp(—kz) + F expkz].
(21.35)

Of course we may use the principle of superposition to build up more general
solutions by adding together solutions of the form (21.35) for all allowed values
of the separation constants k and m.
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Laplace’s equation in spherical polars

We now come to an equation that is very widely applicable in physical science,
namely V?u = 0 in spherical polar coordinates:

2
16(28u>+ ! a(smea—”)ju L_Ju_y (21.38)

I’_ZE d E r2sin06_0 rzsinzH@Tqﬁ2
Our method of procedure will be as before; we try a solution of the form
u(r,0,$) = R(r)0(0)0(¢).
Substituting this in (21.38), dividing through by u = RO® and multiplying by r2,
we obtain

1d (,dR 1 d (. dO { Po
Rdr (V W) T Osnod0 (Sln9_> T oo dr (21.39)

The first term depends only on r and the second and third terms (taken together)
depend only on 0 and ¢. Thus (21.39) is equivalent to the two equations

1 d [ ,dR
rd ( E) — 4 (21.40)
1 d . dO 1 d*d
®sind E <Sll’l Hd_Q) + —q) sin2 0 W = —A (2141)

Equation (21.40) is a homogeneous equation,

d*R dR
27 - e _
r 73 + 2r P AR =0,

which can be reduced, by the substitution » = expt (and writing R(r) = S(t)), to

d’s dS
W—*—E—}LS—O.

This has the straightforward solution
S(t) = Aexp A1t + B exp Aqt,
and so the solution to the radial equation is
R(r) = Ar*' + Br*,
where 4; + 4, = —1 and 414, = —A. We can thus take A; and /4, as given by /

and —(/ + 1); A then has the form /(/ + 1). (It should be noted that at this stage
nothing has been either assumed or proved about whether 7 is an integer.)

21



Taken from Riley, Hobson and Bence

Hence we have obtained some information about the first factor in the
separated-variable solution, which will now have the form

u(r,0,¢) = [Ar" + Br "tV ©(0)d(¢), (21.42)

where ® and ® must satisfy (21.41) with 4 = /(¢ + 1).
The next step is to take (21.41) further. Multiplying through by sin?6 and
substituting for 4, it too takes a separated form:
{sin@ d ( dO 1 d*®

. a .2 e
sm0d9> +/(/ + 1)sin” 0 +(I)d¢2 0. (21.43)

® do

Taking the separation constant as m?, the equation in the azimuthal angle ¢
has the same solution as in cylindrical polars, namely

®(¢p) = C cosme + D sin me.

As before, single-valuedness of u requires that m is an integer; for m = 0 we again
have ®(¢) = C¢p + D.

Having settled the form of ®(¢), we are left only with the equation satisfied by
®(60), which is

sinf d de
® do

sin 9%> + /(4 + 1)sin® 0 = m?. (21.44)
A change of independent variable from 0 to u = cos0 will reduce this to a
form for which solutions are known, and of which some study has been made in
chapter 16. Putting

U= cosb, — = —sin0, i = —(1 _‘u2)1/2i’
du

the equation for M(u) = ©(0) reads

d dM 2

m lu —MZ)E] + l/(/—l— 1)—

| M=o (21.45)

This equation is the associated Legendre equation, which was mentioned in sub-
section 18.2 in the context of Sturm—Liouville equations.

We recall that for the case m = 0, (21.45) reduces to Legendre’s equation, which
was studied at length in chapter 16, and has the solution

M(u) = EP/ (1) + FQ(). (21.46)
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We have not solved (21.45) explicitly for general m, but the solutions were given
in subsection 18.2 and are the associated Legendre functions P;*(u) and Q7(u),
where

dm!
P)(p) = (1 — )" 2du—mP/(u), (21.47)

and similarly for Q7'(u). We then have
M(p) = EPP'(u) + FOJ (p); (21.48)

here m must be an integer, 0 < |m| < /. We note that if we require solutions to
Laplace’s equation that are finite when u = cos0 = +1 (i.e. on the polar axis
where 0 = 0,n), then we must have F = 0 in (21.46) and (21.48) since Q7'(u)
diverges at u = +1.

It will be remembered that one of the important conditions for obtaining
finite polynomial solutions of Legendre’s equation is that / is an integer > O.
This condition therefore applies also to the solutions (21.46) and (21.48) and is
reflected back into the radial part of the general solution given in (21.42).

Now that the solutions of each of the three ordinary differential equations
governing R, ® and ® have been obtained, we may assemble a complete separated-

variable solution of Laplace’s equation in spherical polars. It is

u(r, 0, ¢) = (Ar’ + Br—“*V)(C cosm¢ + D sin m@)[EP,"(cos 0) + FQJ (cos 0)],
(21.49)

where the three bracketted factors are connected only through the integer pa-
rameters / and m, 0 < |m| < /. As before, a general solution may be obtained
by superposing solutions of this form for the allowed values of the separation
constants / and m. As mentioned above, if the solution is required to be finite on
the polar axis then F = 0 for all / and m.
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3.3.2 W Spherical Coordinates

In the examples considered so far, Cartesian coordinates were clearly appropriate,
since the boundaries were planes. For round objects, spherical coordinates are

more natural. In the spherical system, Laplace’s equation reads:

r2 or r2siné 96 r2sin® @ 9¢2

1 9 v 1 9 av 1 3%V
—— (r2§)+ —(sine—)+ =0. (3.53)

I shall assume the problem has azimuthal symmetry, so that V is independent of

¢:'? in that case, Eq. 3.53 reduces to

ar ' or 30

As before, we look for solutions that are products:

d ,dV 1 9 . aVv
(r'—)-l— = —(sm@—):O. (3.54)

V(r,0) = R(rO®). (3.55)

Putting this into Eq. 3.54, and dividing by V,

Rdr \' dr) ' ©sin6 do do

Since the first term depends only on r, and the second only on 6, it follows that
each must be a constant:

| d [ ,dR | d de
L (P ) i+ ), —— 2 (sing ) = 1@+ 1), (357
R dr (’ dr) (D Gne a0 (“” d@) (b G0

Here [(l 4+ 1) is just a fancy way of writing the separation constant—you’ll see in
a minute why this is convenient.

As always, separation of variables has converted a partial differential equation
(3.54) into ordinary differential equations (3.57). The radial equation,

d ( ,dR
— — | = Il +1)R, 3.58
4 (AIRY g4 A%
has the general solution
— Aty 3.59
R(_r) = Ar" + ﬁ! ( i )

1 d [ ,dR 1 d 10
(r2 ) e B (sina‘ ) o (3.56)
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as you can easily check; A and B are the two arbitrary constants to be expected
in the solution of a second-order differential equation. But the angular equation,

; G
a (Singd ) = —I(l + 1)sin6 O, (3.60)

is not so simple. The solutions are Legendre polynomials in the variable cos 6:
®(0) = P;(cos0). (3.61)
P;(x) is most conveniently defined by the Rodrigues formula:

!
P(x) = L (—x) (x* — 1) (3.62)

The first few Legendre polynomials are listed in Table 3.1.

Polx) = 1

Pi(x) = x

P(x) = Bx*=1)/2

Piy(x) = (5x° —3x)/2

Pi(x) = (35x* —30x%+3)/8
Ps(x) = (63x° — 70x> + 15x)/8

TABLE 3.1 Legendre Polynomials.

Notice that P;(x) is (as the name suggests) an [th-order polynomial in x; it con-
tains only even powers, if [ is even, and odd powers, if [ is odd. The factor in front

(1/2!1') was chosen in order that

P(1) = 1. (3.63)

The Rodrigues formula obviously works only for nonnegative integer values
of /. Moreover, it provides us with only one solution. But Eq. 3.60 is second-
order, and it should possess two independent solutions, for every value of [. It
turns out that these “other solutions” blow up at # = 0 and/or 6 = 7, and are
therefore unacceptable on physical grounds.'? For instance, the second solution

forl =01s

®(6) = In ( tan g) . (3.64)

25



Taken from D. J. Griffiths

You might want to check for yourself that this satisfies Eq. 3.60.
In the case of azimuthal symmetry, then, the most general separable solution
to Laplace’s equation, consistent with minimal physical requirements, is

V(r,0) = (Ar" - %) Pi(cos ).
7
(There was no need to include an overall constant in Eq. 3.61 because it can be
absorbed into A and B at this stage.) As before, separation of variables yields an
infinite set of solutions, one for each /. The general solution is the linear combi-
nation of separable solutions:

V(r,0) = Z (Agr" + —%—) P,(cosB). (3.65)

I+1
¥
=0

The following examples illustrate the power of this important result.

Example 3.8. An uncharged metal sphere of radius R is placed in an other-
wise uniform electric field E = E(z. The field will push positive charge to the
“northern” surface of the sphere, and—symmetrically—negative charge to the
“southern” surface (Fig. 3.24). This induced charge, in turn, distorts the field in
the neighborhood of the sphere. Find the potential in the region outside the sphere.

Solution

The sphere is an equipotential—we may as well set it to zero. Then by symmetry
the entire xy plane is at potential zero. This time, however, V does not go to zero
at large z. In fact, far from the sphere the field is E(z, and hence

V > —Egz+ C.
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—y

FIGURE 3.24

Since V = 0 in the equatorial plane, the constant C must be zero. Accordingly,
the boundary conditions for this problem are

i V=0 whenr = R,
(iil) V — —Egrcos6 forr > R. (3.748)
We must fit these boundary conditions with a function of the form 3.65.
The first condition yields
B,
! —
AZR —|— W — 0,
or
B = —AR¥T, (3.75)
N

RZH—I

V(r.0) =ZA,: (r’ —~— )Pg(cosé').
1=0

For r > R, the second term in parentheses is negligible, and therefore condition
(i1) requires that

o0
Z AlrlPl(cos 0) = —Eyr cosb.
1=0
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Evidently only one term is present: [ = 1. In fact, since P;(cosf) = cos 6, we can
read off immediately

A; = —Ey, all other A;’s zero.

Conclusion:

=

R3
V(r,0) = —E, (r - —,,) cos . (3.76)

The first term (—Eprcosf) is due to the external field; the contribution
attributable to the induced charge 1s

3
Eo — cos 6.
r
If you want to know the induced charge density, it can be calculated in the usual
way:

= 3egEgcosf. (3.77)

R3
= €9 Ep (l + 27) cos
r=R F: r=R

aV
0'(9) = — €)—
or

As expected, it is positive in the “northern” hemisphere (0 < 6 < 7/2) and neg-
ative in the “southern” (/2 < 60 < ).
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