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Oscillatory motion and related physics

1 Introduction

Oscillatory motion is a very special kind of motion in which the moving body repeats its trajectory in

to and fro fashion. In fact whenever a particle is disturbed slightly from its stable equilibrium point, it

exhibits oscillatory motion. Therefore, it is very important to understand the mechanical equilibrium in

connection with oscillatory motion.

1.1 Equilibrium

A particle is said to be in equilibrium at some point in space if net force acting on the particle vanishes

exactly at that specified point. The point is known to be equilibrium point. In a given potential function

V (r), it is possible to find out the equilibrium points. According to definition of equilibrium, at equilibrium

points,

F = −∇V (r) = 0

Let us consider one dimensional case, then at equilibrium point x0,

F (x0) = −
(
dV (x)

dx

)
x0

= 0

Since the first derivative of V (x) vanishes at equilibrium points, that means the potential function will

exhibit extrema (maxima or minima) at equilibrium points. If it shows minima then the equilibrium will be

stable equilibrium and if it shows maxima the equilibrium will be unstable equilibrium. Consider the figure

Figure 1: Potential function in one dimension and equilibrium points.

1, in which the variation of one dimentional potential function over space is shown. F (x) = −dV (x)
dx vanishes

at two points at A and B. That means both A and B are equilibrium point; but the stable equilibrium

is at point A. If a body is slightly displaced from A, then it tries to minimize its potential an turns back

to point A. On the other hand if a body is slightly displaced from point B, it also tries to minimize its

potential so that it never goes back to point B. Therefore, when a particle is disturbed about point A it

exhibits oscillatory motion.

For small displacement from equilibrium point x0, the potential can be expressed in Taylor series

expansion as,

V (x) = V (x0) +

(
dV

dx

)
x0

(x− x0) +
1

2

(
d2V

dx2

)
x0

(x− x0)
2 +

1

3!

(
d3V

dx3

)
x0

(x− x0)
3 + ............... (1)

But at equilibrium point,

F (x0) =

(
dV

dx

)
x0

= 0
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Oscillatory motion and related physics

The additive constant potential V (x0) does not have any role in describing the motion. Therefore, for

small displacement about x0 the lowest order non-vanishing term is quadratic and we can neglect the

higher order terms. That means, equation (1) can be approximated as,

V (x) =
1

2

(
d2V

dx2

)
x0

(x− x0)
2 (2)

Motion of a particle in this potential is known as simple harmonic motion. Further we can set our origin

at x0 such that the potential takes the form,

V (x) =
1

2

(
d2V

dx2

)
0

x2 =
1

2
kx2 (3)

where k is known as spring constant.

• Problem : Consider one dimensional potential,

V (x) = 4σ

(
1

x6
− 1

x12

)
Plot the variation of V (x). Find the equilibrium position and check whether it is stable or unstable

equilibrium. If a particle is slightly displaced from its equilibrium point then determine the spring constant

associated with its motion.

2 Simple harmonic motion (SHM)

Potential energy of an one dimensional simple harmonic oscillator performing oscillation about origin is

given by equation (3). Hence the force acting on the particle is,

F (x) = −dV

dx
= −kx

Therefore, the equation of motion becomes,

m
d2x

dt2
= −kx

⇒ d2x

dt2
+ ω2

0x = 0

(4)

where ω0 =
√
k/m is known as natural frequency of the harmonic motion. The solution of this second

order differential equation can be expressed as,

x(t) = A sin(ω0t+ ϕ)

or

= A cos(ω0t+ ϕ)

(5)

Two arbitrary constants A and ϕ associated with 2nd order differential equation are known as amplitude

and phase angle respectively. They are to be determined from initial (or boundary) conditions. For

simplicity we can set the initial phase angle ϕ = 0 without loss of any generality.
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2.1 Energy of SHM

Let consider the SHM described as,

x(t) = A sin(ω0t)

Therefore, instantaneous velocity of the oscillator is given by,

v(t) =
dx

dt
= ω0A cos(ω0t)

Potential energy,

EP =
1

2
kx2 =

1

2
mω2

0x
2 =

1

2
mω2

0A
2 sin2(ω0t)

Kinetic energy,

EK =
1

2
mv2 =

1

2
mω2

0A
2 cos2(ω0t)

Total energy,

E = EP + EK =
1

2
mω2

0A
2 sin2(ω0t) +

1

2
mω2

0A
2 cos2(ω0t) =

1

2
mω2

0A
2

Although EP and EK are time dependent but total energy is constant with respect to time. Actually,

during the motion, EK and E(P ) are changing such that their sum remains constant.

Figure 2: Variation of kinetic energy, potential energy and total energy of a particle executing SHM. Total

energy s constant.

3 Damped harmonic motion

An oscillating particle in general feels resistive force during its oscillatory motion due to viscous drag of

the medium in which it is oscillating. The resistive force can be approximated to be proportional to its

instantaneous velocity and acting against its motion. In this situation the equation of motion of oscillating

particle can be expressed as,

m
d2x

dt2
= −λ

dx

dt
− kx

where, −λdx
dt is the resistive force proportional to instantaneous velocity dx

dt with proportionality constant

λ. −kx is the restoring force responsible for SHM. The equation of motion can be rewritten as,

d2x

dt2
+ γ

dx

dt
+ ω2

0x = 0 (6)
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where, γ = λ/m and ω2
0 = k/m

Trial solution of this equation is,

x(t) ∼ eβt

substituting this trial solution in equation (6) we get,

β2 + γβ + ω2
0 = 0

⇒ β =
1

2
[−γ ±

√
γ2 − 4ω2

0]

⇒ β = −α±
√
α2 − ω2

0 ; Let, α = γ/2

(7)

Depending upon the value of the factor
√
α2 − ω2

0 we can get various situations of motion.

• Case-I : Let (α2 − ω2
0) > 0; In this case the motion is non oscillatory known as over damped motion.

The solution is given by,

x(t) = e−αt

[
A exp

(
t
√
α2 − ω2

0

)
+B exp

(
−t

√
α2 − ω2

0

)]
• Case-II : Let (α2−ω2

0) = 0; In this case the motion is non oscillatory known as critically damped motion.

The solution is given by,

x(t) = e−αt(At+B)

• Case-III : Let (α2 −ω2
0) < 0; In this case the motion is oscillatory and we are interested to explore

this situation.

We have

β = −α±
√

α2 − ω2
0

with (α2 − ω2
0) < 0. Therefore, β becomes a complex number,

β = −α± iω

where we define,

ω =
√
ω2
0 − α2 (8)

Since the form of solution is,

x(t) ∼ eβt

We have the solution for this case,

x(t) = e−αt(aeiωt + be−iωt)

= e−αt[a(cosωt+ i sinωt) + b(cosωt− i sinωt)]

= e−αt[(a+ b) cosωt+ i(a− b) sinωt)]

= Ae−αt cos(ωt+ ϕ)

(9)

where, A cosϕ = (a + b) and A cosϕ = −i(a − b). In fact, we can choose the initial condition such that

ϕ = 0. Therefore, the general solution of damped harmonic oscillation is given by,

x(t) = Ae−αt cos(ωt) (10)

To be noted that the particle oscillates with frequency ω =
√
ω2
0 − α2 instead of its natural frequency

ω0. However, it can be shown that in weak damping i.e., α << ω0, the particle oscillates almost with its

natural frequency ω ≈ ω0. For damped oscillation, the amplitude falls off exponentially with time due to

the factor e−αt.
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Figure 3: Time dependent displacement of damped oscillator.

3.1 Energy of damped oscillator

Potential energy,

EP =
1

2
kx2 =

1

2
mω2x2 =

1

2
mω2A2e−2αt cos2(ωt)

To determine the kinetic energy, we have to compute velocity of the oscillator. From expression (10),

v(t) =
dx

dt
= Ae−αt[−α cosωt− ω sinωt]

Mostly we encounter weak dissipation i.e; α << ω, therefore,

dx

dt
≈ −ωAe−αt sinωt = ωAe−αt cos(ωt+ π/2)

It is to be noted for small damping, velocity leads the displacement by π/2 phase angle.

Now the kinetic energy,

EK =
1

2
m

(
dx

dt

)2

=
1

2
mω2A2e−2αt sin2(ωt)

Total energy,

E = (EP + EK) =
1

2
mω2A2e−2αt cos2(ωt) +

1

2
mω2A2e−2αt sin2(ωt) =

1

2
mω2A2e−2αt

Therefore, total energy of damped harmonic oscillator decreases exponentially with time.

Here it is easy to show from the final expressions of EK , EP and E,

⟨EK⟩ = ⟨EP ⟩ = E/2

3.2 Logarithmic decrement

Amplitude of damped oscillator decreases with time as Ae−αt. Suppose, d0, d1, d2, d3, ....... are the succes-

sive maximum displacements about mean position in both directions. That means, for a positive integer

variable n, d2n express maximum displacements in one side and d2n+1 express maximum displacements in

another side. Therefore, if the time period of oscillation is t then,

d0 = A , d1 = A exp(−αT/2)
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d2 = A exp(−αT ) , d3 = A exp(−3αT/2)

.................

d2n = A exp(−nαT ) , d2n+1 = A exp[−(2n+ 1)αT/2]

Therefore,
d2n
d2n+1

= exp(αT/2) ; n = 0, 1, 2, 3, ......

The logarithmic decrement Λ is defined as,

Λ = ln

(
d2n
d2n+1

)
Therefore, using the above expressions we have,

Λ = αT/2

3.3 Equation of motion from energy conservation

Damped oscillator continuously dissipates it total energy due to resistive force. The rate of change of total

energy must be equal to loss rate of energy due to damping.

Resistive force = mγ
dx

dt

Therefore, work done due to infinitesimal displacement dx under this force,

dW = mγ
dx

dt
dx

Therefore, energy loss rate due to damping,

dW

dt
= mγ

(
dx

dt

)2

According to energy conservation,

− dE

dt
=

dW

dt

⇒ d

dt
(EP + EK) = −mγ

(
dx

dt

)2

⇒ d

dt

(
1

2
kx2 +

1

2
m
.
x2

)
= −mγ

.
x2

⇒ kx
.
x+m

.
x
..
x+mγ

.
x2 = 0

⇒ ..
x+ γ

.
x+ (k/m)x = 0

⇒ ..
x+ γ

.
x+ ω2

0x = 0

(11)

Hence, we have obtained the equation of motion identical to equation (6)
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4 Forced harmonic oscillation

In this case an oscillator is driven externally by a periodic (sinusoidal) force can be expressed as F0 cos(ωt),

where F0 is the amplitude of the force. The equation of motion is given as,

m
..
x+ λ

.
x+ kx = F0 cos(ωt)

or,
..
x+ γ

.
x+ ω2

0x = f0 cos(ωt) (12)

where, γ = λ/m, ω0 =
√
k/m and f0 = F0/m

The equation of motion (12) can be solved easily by introducing the complex quantity eiωt which is

periodic function in complex plane and moreover it can be decomposed as,

exp(iωt) = cos(ωt) + i sin(ωt) ; i =
√
−1

That means sinusoidal oscillation can be captured through the function exp(iωt). Hence, the equation of

motion becomes,
..
x+ γ

.
x+ ω2

0x = f0 exp(iωt) (13)

It is obvious that due to external force, the oscillator will exhibit a harmonic oscillation with frequency

equals to the frequency of applied force i.e; ω instead of its natural frequency ω0.

Let us consider the solution of equation (13) as,

x(t) = A exp(iωt) (14)

where A is the amplitude of oscillation which is in this case a complex quantity. Putting this expression

of x(t) in equation (13),

A[−ω2 + iγω + ω2
0] = f0

⇒ A(ω) =
f0

(ω2
0 − ω2) + iγω

=
f0
Z

(15)

Where,

Z = (ω2
0 − ω2) + iγω = |Z| exp(iϕ)

where,

|Z| =
√
(ω2

0 − ω2)2 + γ2ω2 and tanϕ =
γω

ω2
0 − ω2

(16)

Therefore,

A(ω) =
f0
Z

=
f0

|Z| exp(iϕ)
=

f0
|Z|

exp(−iϕ)

Now from expression (14) we get,

x(t) = A(ω) exp(iωt) =
f0
|Z|

exp[i(ωt− ϕ)]

If we consider the force as F (t) = F0 cos(ωt) then the solution becomes,

x(t) =
f0
|Z|

cos(ωt− ϕ) (17)

where |Z| and ϕ are given in expressions (16).

8
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4.1 Energy of forced oscillator

Potential energy,

EP =
1

2
mω2x2 =

mω2f2
0

2|Z|2
cos2(ωt− ϕ) ; using (17)

Kinetic energy,

EK =
1

2
m
.
x2 =

mω2f2
0

2|Z|2
sin2(ωt− ϕ) ; using (17)

Therefore, total energy

E = (EP + EK) =
mω2f2

0

2|Z|2

Both kinetic energy and potential energy are oscillatory with time but the total energy energy is constant

for forced harmonic oscillator. In forced harmonic oscillator an equilibrium situation is attained between

energy delivered by external force and energy loss due to damping. The rate of energy input by driving

force exactly balanced by the rate of energy loss due to dissipation; so that total energy remains constant.

Instantaneous power delivered by external force,

pin(t) = F (t)
.
x(t) =

.
xmf0 cos(ωt)

Evaluating
.
x using expression (17) ,

pin(t) = −mωf2
0

|Z|
cos(ωt) sin(ωt− ϕ) = −mωf2

0

|Z|
[sin(ωt) cos(ωt) cosϕ− cos2(ωt) sinϕ]

Therefore, average power delivered by driving force,

⟨pin(t)⟩ =
mωf2

0

2|Z|
sinϕ

where we have used the fact,

⟨sin(ωt) cos(ωt)⟩ = 0 and ⟨cos2(ωt)⟩ = 1/2

Now,

sinϕ =
tanϕ√

1 + tan2 ϕ
=

γω√
(ω2

0 − ω2)2 + γ2ω2
=

γω

|Z|
; using equation (16)

Therefore,

⟨pin(t)⟩ =
mωf2

0

|Z|
sinϕ =

mγω2f2
0

2|Z|2
(18)

This is the expression for average power delivered to the oscillator by the driving force.

Now we evaluate the average power dissipation by damping force;

pout(t) = damping force× velocity = mγ
.
x2 =

mγω2f2
0

|Z|2
sin2(ωt− ϕ) ; Using (17)

Therefore,

⟨pout(t)⟩ =
mγω2f2

0

2|Z|2
; Since, ⟨sin2(ωt− ϕ)⟩ = 1/2

That means average power delivered by driving force is identical to average power dissipation by damping

force such that total energy remains constant with time.
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4.2 Resonance phenomena

4.2.1 Amplitude resonance

From expression (17), the amplitude of oscillation is observed to be frequency dependent which is given

by,

|A(ω)| = f0
|Z|

=
f0√

(ω2
0 − ω2)2 + γ2ω2

The amplitude becomes maximum at some driving frequency ωr and this phenomena is known as amplitude

resonance. Therefore at amplitude resonance frequency ωr the denominator should be minimum; that

means,

d

dω
[(ω2

0 − ω2)2 + γ2ω2)]ωr = 0

⇒ − 4ωr(ω
2
0 − ω2

r ) + 2γ2ω2
r = 0

⇒ ωr = (ω2
0 − γ2/2)1/2 = ω0

(
1− γ2/2ω2

0

)1/2 (19)

Therefore, amplitude resonance occurs at slightly less frequency than that of natural frequency ω0. However

in the weak damping case (γ << ω0), where, amplitude resonance frequency ωr ≈ ω0.

4.2.2 Velocity resonance

Using the expression for displacement given in equation (17),

v(t) =
.
x(t) = −ωf0

|Z|
sin(ωt− ϕ)

Therefore, velocity amplitude of oscillator is,

V (ω) =
ωf0
|Z|

=
ωf0√

(ω2
0 − ω2)2 + γ2ω2

=
f0√

(ω2
0/ω − ω)2 + γ2

The velocity resonance occurs at some particular frequency ω′ at which V (ω) becomes maximum; that

means the denominator factor in the expression of V (ω) becomes minimum at ω = ω′. The criteria of

minimum value of denominator is,

ω2
0/ω

′ − ω′ = 0 ⇒ ω′ = ω0

Therefore, when the frequency of driving force exactly matches with the natural frequency (ω0) of the

oscillator then velocity resonance occurs.

4.2.3 Power resonance

As we have already seen that from energy conservation the average power delivered to the oscillator by

driving force exactly matches to the average power dissipation due to damping force that means ⟨pout(t)⟩ =
⟨pin(t)⟩. Input power as well as consumed power obtained above as,

⟨pout(t)⟩ = ⟨pin(t)⟩ =
mγω2f2

0

2|Z|2
=

mγω2f2
0

2[(ω2
0 − ω2)2 + γ2ω2]

=
mγf2

0

2[(ω2
0/ω − ω)2 + γ2]

Hence, maximum power delivered (or dissipation) occurs at power resonance frequency ω = ω0 because at

this frequency the denominator becomes minimum to make the overall term maximum. In other words,

when the frequency of driving force exactly matches with the natural frequency of the oscillator (i.e; ω0),

power resonance occurs and as a result maximum power transfer occurs to the oscillator by the driving

agency.

The frequency dependent variation of resonance curves are depicted in figure 4
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Figure 4: Resonance curves

4.2.4 Sharpness of resonance

Figure 5: Power resonance curve.

Sharpness of resonance is a very important idea related to forced oscillation and it has great physi-

cal significance in designing receptor circuit. Maximum power absorption from external oscillatory force

is attained at resonance frequency and away from this frequency power absorption gradually decreases.

Therefore, if we have many driving sources having various driving frequencies then the system will absorb

power from those driving system having frequencies close to natural frequency of the oscillator (i.e; ω0).

That means if the power resonance curve of an oscillator is sharp then it only absorb power from very

narrow frequency window and rejects all frequencies beyond this narrow window. Generally, the accep-

tance of frequency range by an oscillator is defined by band width : ∆ω = (ω2 − ω1); where ω2 and ω1 are

known as half power frequencies. At half power frequencies, the power becomes half of its maximum value

(maximum value occurs at resonance).

Therefore, at half power frequencies ⟨p⟩ = pmax/2.

From equation (18),

⟨p⟩ = mγω2f2
0

2|Z|2
=

mγf2
0

2[(ω2
0/ω − ω)2 + γ2]

At resonance frequency ω = ω0, we have ⟨p⟩ = pmax. Therefore,

pmax =
mf2

0

2γ

11
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Now at half power frequencies,

⟨p⟩ = pmax/2

⇒ mγf2
0

2[(ω2
0/ω − ω)2 + γ2]

=
mf2

0

4γ

⇒ (ω2
0 − ω2)2 = ω2γ2

⇒ ω2
0 − ω2 = ±ωγ

⇒ ω2 ± γω − ω2
0 = 0

⇒ ω =
1

2

[
∓γ ±

√
γ2 + 4ω2

0

]
(20)

As expected, we have four solutions of ω as it was a forth order equation of ω. However, only two of these

solutions are physically acceptable;

ω1 =
1

2

[
−γ +

√
γ2 + 4ω2

0

]
and

ω2 =
1

2

[
γ +

√
γ2 + 4ω2

0

]
Other two solutions yield negative value of ω which is non-physical. These tow half power frequencies are

depicted in the power resonance curve (figure 5). Hence the band width ∆ω is defined as the difference

between two half power frequencies,

∆ω = ω2 − ω1 = γ

The quality factor Q is defined as,

Q =
ω0

∆ω

According to definition of the quality factor it measures the sharpness of resonance curve or the selectivity

of oscillating system. If Q is large, then it implies that the curve is sharp and more selective.

5 Superposition of SHM

Figure 6: Beats : superposition of two co linear oscillations; x1(t) = a cos(ω1t) and x2(t) = b cos(ω2t) such

that ω1 ≈ ω2. In this figure, ω1 = 10 and ω2 = 11

12
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6 Coupled oscillation

7 Waves
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8 Group velocity and phase velocity

A pure sinusoidal wave of single frequency is infinitely extended in space-time. It neither has any starting

point and nor a end point. It exhibits full space-time translational symmetry. Therefore, an information

by means of wavy signal can not be propagated through pure sinusoidal wave. To flow a signal through

wave, the shape of the wave should be changed somehow different from pure sinusoidal. The signal have

to have a starting point and a end point in space-time; that means it has a finite extension in space time.

Such a propagating wave is called wave packet. The wave packet propagates through medium and carries

information. For example, switching on-off of a light source will produce a light wave (EM wave) packet of

finite extension in space-time and this wave packet caries signal from one point to another point in space.

A propagating wave packet has many frequency components associated with pure sinusoidal waves. In

other words, many sinusoidals having various wavelengths (or wave vectors) and amplitudes superpose to

give rise wave packet. The shape and velocity of propagation of wave packet depends on the contributions of

sinusoidals. Though the sinusoidal wave propagates with their characteristic velocity called pahse velocity:

vp; the wave packet propagates with somehow different velocity called group velocity: vg. As the wave

packet is basically group of many sinusoidal waves, thats why its velocity is known to be group velocity.

The mathematical form of pure sinusoidal wave propagating along x-axis is given by;

ξ(x, t) = a exp[i(kx− ωt)] (21)

Here the wave vector k, angular frequency ω and phase velocity vp are connected as;

ω = kvp

In dispersive medium, vp is a function of k that means λ. Therefore,

ω(k) = kvp(k)

The wave packet is superposition of various sinusoidal waves of various amplitudes and frequencies, there-

fore, mathematically a wave packet can be described as,

Ψ(x, t) =
∑
k

ξk(x, t) =
∑
k

ak exp[i(kx− ω(k)t)] (22)

k is a continuous variable, therefore the discrete sum is to be transformed to integral as;

Ψ(x, t) =
1√
2π

∫ ∞

−∞
φ(k) exp[i(kx− ω(k)t)] dk (23)

The prefactor of 1/
√
2π is for convention.

At the starting time t = 0, the wave packet is generated at some point x. The initial shape of wave

packet is;

Ψ(x, 0) =
1√
2π

∫ ∞

−∞
φ(k) exp(ikx) dk (24)

This is basically Fourier transformation of the function φ(k). The function φ(k) can be obtained by inverse

Fourier transformation of Ψ(x, 0) as,

φ(k) =
1√
2π

∫ ∞

−∞
Ψ(x, 0) exp(−ikx) dx (25)

At time t = 0, the wave packet Ψ(x, 0) is produced at point x and then it propagates with velocity vg

and reaches at some point x′ = x+ vgt after time t. So our aim is to find out Ψ(x, t) using given shape of

Ψ(x, 0) and to identify vg.
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Oscillatory motion and related physics

Let us assume φ(k) is sharply peaked function of k about k = k0. If we consider wide range of variation

of φ(k) over k then we have to also consider wide variation of ω(k) i.e; vp(k) to integrate Eq.(23) (as they

are related to each other). In such situation a large nos of sinusoidal waves having wide variation of vp(k)

is superposing, therefore, the group of wave (wave packet) smears out too quickly. For sharply peaked φ(k)

about k = k0, we can assume,

ω(k) ≈ ω(ko) + (k − k0)

(
dω(k)

dk

)
k0

= ω0 + (k − k0)ω
′
0

Therefore, in Eq.(23) we substitute the approximate expression of ω(k),

Ψ(x, t) =
1√
2π

∫ ∞

−∞
φ(k) exp[i(kx− (ω0 + (k − k0)ω

′
0)t)] dk

=
1√
2π

∫ ∞

−∞
φ(k) exp[i(kx− ω0t− kω′

0t+ k0ω
′
0t)] dk

= exp[−i(ω0 − k0ω
′
0)t]×

1√
2π

∫ ∞

−∞
φ(k) exp[i(x− ω′

0t)k] dk

Now we transform the variable x → x+ ω′
0t

Ψ(x+ ω′
0t, t) = exp[−i(ω0 − k0ω

′
0)t]×

1√
2π

∫ ∞

−∞
φ(k) exp(ikx) dk

= exp[−i(ω0 − k0ω
′
0)t] Ψ(x, 0)

(26)

The last expression says that after starting of the wave packet Ψ(x, 0) at time t = 0 and at position x, it

travels to a distance x′ = x+ ω′
0t after time t. The prefactor exp[−i(ω0 − k0ω

′
0)t] is a phase factor, it does

not have any contribution to the intensity of wave packet. Here, one thing is clear that the wave packet

Ψ travels with a velocity of vg = ω′
0 according to the expression. That means we can express the group

velocity and phase velocity as;

vg =
dω(k)

dk
and vp =

ω(k)

k
(27)

8.1 Relation between phase velocity and group velocity

vg =
dω(k)

dk

=
d

dk
(kvp(k))

= vp(k) + k
dvp(k)

dk

= vp(λ) +
2π

λ

dvp(λ)

dλ

dλ

dk
; k =

2π

λ

= vp(λ) +
2π

λ

dvp(λ)

dλ

(
−λ2

2π

)
;

dλ

dk
= −λ2

2π

= vp(λ)− λ
dvp(λ)

dλ

(28)

Therefore, relation between vg and vp is,

vg = vp − λ
dvp
dλ

(29)

9 Exercise with hint and solution

1.
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