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1 Maxwell’s equations

Electrodynamics is the branch of physics in which we discuss interactions among charges while they

are in rest or in motion as well as interaction of electromagnetic (EM) wave with charges and related

phenomena. The theory of electrodynamics is governed by three fundamental laws,

1. Gauss’s law

2. Faraday’s law

3. Ampere’s circuital law

The mathematical form of these laws can be expressed both in differential and integral form. In

free space (where there is no medium) the mathematical form of these laws;

Differential form :

∇ ·E =
ρ

ε0
(Gauss’s law)

∇×E = −∂B
∂t

(Faraday’s law)

∇×B = µ0J (Ampere’s circuital law) (1)

Apart from these three laws, there is a very special properties of magnetic field : it’s divergence

is zero,

∇ ·B = 0

This is the manifestation of the fact that magnetic monopole does not exist. Physically, divergence

measures the outward flux of a vector field. Since there is no magnetic monopole, magnetic field

vector originating from north pole must terminate to the south pole resulting net outward flux to

be zero.

Integral form1 : ∮
S

E · da =
Qenc

ε0
(Gauss’s law)∮

C

E · dl = −dΦB

dt
(Faraday’s law)∮

C

B · dl = µ0Ienc (Ampere’s circuital law)∮
S

B · da = 0 (2)

Everything is fine except the Ampere’s circuital law. The problem and its corrected form due

to Maxwell is discussed in the following section.

1The integral forms can be obtained using divergence theorem and Stoke’s theorem to the differential forms.
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1.1 Maxwell’s equations in free space

As already mentioned that something is wrong to the Ampere’s circuital law. Consider the differ-

ential form of the Ampere’s law and take divergence on both sides,

∇ · (∇×B) = µ0∇ · J (3)

Now, div. of curl is always zero from vector identity; however the right hand side expression : ∇·J
is not always zero. It vanishes only for steady current where there is no accumulation of charges.

In other words, inflow rate of charges is same as of the outflow rate such that total divergence of J

turns out to be zero.

The general form of this law should be corrected in such a way that it takes into account the

non-steady case also. Maxwell did this job in a very ingenious way. The Maxwell’s corrected form

has a great impact in the field of physical sciences bearing widespread consequences.

The continuity equation associated with the charge conservation,

∂ρ

∂t
+∇ · J = 0 (4)

From which using the Gauss’s law we can find,

∇ · J = −∂ρ
∂t

= − ∂

∂t
(ε0∇ ·E) (5)

That means,

∇ ·
(
J + ε0

∂E

∂t

)
= 0 (6)

So, if we transform,

J →
(
J + ε0

∂E

∂t

)
in the Ampere’s circuital law then the problem will be resolved. The corrected form of the Ampere’s

circuital law proposed by Maxwell,

∇×B = µ0J + µ0ε0
∂E

∂t
(7)

In this equation, divergence of both sides vanish.

The four basic laws of electrodynamics altogether are known as Maxwell’s field equations. Before

Maxwell’s work, there was no clear picture about the connectivity of E and B fields. After Maxwell’s

work, the mathematical forms of the laws take symmetric form in between E and B field which

is explicitly observed in Faraday’s law and Ampere’s law. In Faraday’s law : changing magnetic

field produces electric field and in Ampere’s law (corrected form) : changing electric field produces

magnetic field. Basically both E and B are same entities observed from different frame of references

(which is clearly discussed in the context of relativity theory).

Finally we have the Maxwell’s equations in the free space (no material medium)
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Differential form :

(i) ∇ ·E(r, t) =
ρ(r, t)

ε0

(ii) ∇ ·B(r, t) = 0

(iii) ∇×E(r, t) = −∂B(r, t)

∂t

(iv) ∇×B(r, t) = µ0J(r, t) + µ0ε0
∂E(r, t)

∂t

(8)

Where the differentiations are performed at (r, t) point and the source terms i.e; charge density and

current density are to be taken at the same point (r, t). That means at those points where there is

no charge density, ∇ ·E becomes zero.

Integral form :

(i)

∮
S

E · da =
Qenc

ε0

(ii)

∮
S

B · da = 0

(iii)

∮
C

E · dl = −dΦB

dt

(iv)

∮
C

B · dl = µ0Ienc + µ0ε0
dΦE

dt

(9)

The term,

ε0
dΦE

dt

is known as displacement current and the corresponding displacement current density is,

JD = ε0
∂E

∂t
(10)

The concept of displacement current can be understood with the example of parallel plate

capacitor connected to a source. The source will charge the parallel plates of the capacitor and that

Figure 1:
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eventually produces electric field across the plates. Suppose, σ(t) be the surface charge density at

the capacitor plates, then,

E =
σ

ε0

The associated displacement current becomes,

ID = ε0
dΦE

dt

= ε0
d

dt
(EA) ; A = area of the plates

=
d

dt
(σA) =

dQ

dt

Now, dQ
dt

is the actual current flowing through the circuit. So, the displacement current in between

two plates is identical to the physical current flowing through the circuit. Through the connecting

wires, there is no displacement current and in reverse there is no physical current in between two

plates of the capacitor.

Exercise 1. From the Coulomb’s law, electrostatic field for a point charge (located at r = 0) is

given by,

E(r) =
q

4πε0

r̂

r2

Check the consistency of

∇ ·E =
ρ

ε0

and

∮
S

E · da =
q

ε0
(11)

Solution :

The given field E(r) is spherically symmetric due to its structure. Expression of divergence in

spherical polar coordinate is given by,

∇ ·E =
1

r2
∂

∂r

(
r2Er

)
+

1

r sin θ

∂

∂θ
(sin θEθ) +

1

r sin θ

∂

∂φ
(Eφ) (12)

For the given field,

Er =
q

4πε0r2
and Eθ = Eφ = 0

Therefore,

∇ ·E =
1

r2
∂

∂r

(
r2Er

)
=

1

r2
∂

∂r

(
r2

q

4πε0r2

)
= 0 (13)

As expected, the divergence of E is to be zero for r 6= 0 because the charge is located exactly at

r = 0. But it should be equal to ρ/ε0 at r = 0 according to Maxwell’s equation. This paradoxical

situation arises due to the singularity arises from the point charge located at r = 0; it is not possible

to describe a point charge by means of any analytic expression of charge density ρ(r) in form of,

q =

∫
V

ρ(r)d3r
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Special care should be taken in the divergence of E for point charge. Normal procedure to carry

out the divergence fails at the point where the point charge is located.

Introduce the Dirac delta function in three dimension,

δ(r) = 0 ; for r 6= 0

6= 0 ; for r = 0 (14)

Along with its basic property, ∫
V

f(r)δ(r)d3r = f(0) (15)

With the help of delta function, the charge density associated with point charge located at r = 0

can be expressed as,

ρ(r) = qδ(r) (16)

Then, divergence of E for point charge q at origin is defined as,

∇ ·E =
q

4πε0
∇ ·

(
r̂

r2

)
=

1

ε0
qδ(r) (17)

In the same spirit the divergence of inverse square function is defined as,

∇ ·
(
r̂

r2

)
= 4πδ(r) (18)

Consider the integral, ∮
S

E · da =

∮
S

q

4πε0

r̂

r2
·
(
r̂r2 sin θdθdφ

)︸ ︷︷ ︸
da

(19)

=
q

4πε0

∫ π

0

sin θ dθ

∫ 2π

0

dφ (20)∮
S

E · da =
q

ε0
(21)

1.2 Maxwell’s equations in matter

Everything is fine with the Maxwell’s equation as prescribed from (i) to (iv) in equations (8) and

(9) in free space, however inside matter, electric and magnetic fields produce electric and magnetic

polarization to the material and as a result, bound charges and bound currents are formed on which

we do not have explicit control. Furthermore, bound charges and bound currents give rise to new

electric and magnetic field which superpose with the former fields (responsible for bound charges

and currents). In this context it is convenient to rewrite the Maxwell’s equations in terms of free

charges and free currents on which we have direct control.

If the electric polarization vector is P then, bound charges associated with P ,

ρb = −∇ · P (22)
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and similarly bound current density Jb associated with the magnetic polarization vector M is,

Jb =∇×M (23)

Now we add a new feature related to the time dependent case. Suppose, the polarization P is

time dependent, then change of polarization gives rise to polarization current density Jp. Physically

polarization is the phenomena in which there is a separation of positive and negative charge density

by very small spatial gap. Change of polarization in time means some amount of charge is flowing

from positive to negative region or vice-versa that will results in flow of charge in time means current

flow. Polarization gives rise to accumulation of bound surface charge density ±σb given by,

σb = P · n̂

where, n̂ is the surface normal unit vector. In case, if polarization changes with time, associated

surface charge density also changes. The change of surface charge density can be interpreted as flow

of charge to the surface resulting a current called polarization current. Total charge on a surface

due to bound charge density σb is,

qb =

∫
S

σbda

Then, polarization current becomes,

Ib =
dqb
dt

=
d

dt

∫
S

σbda =

∫
S

∂σb
∂t

da =

∫
S

∂P

∂t
· da

Therefore, the polarization current density identified as,

Jp =
∂P

∂t
(24)

One thing is to be made clear that increase of bound surface charge density means flow of

bound volume charge density to the surface and vise-verse such that total bound charge density

(including volume charge and surface charge) remains constant. So, bound charge density should

obey continuity equation. Let’s check,

∂ρb
∂t

+∇ · Jp =
∂

∂t
(−∇ · P )︸ ︷︷ ︸

ρb

+∇ · ∂P
∂t︸︷︷︸
Jp

= 0

There is non violation of continuity equation.

Now total volume charge density,

ρ = ρf + ρb = ρf −∇ · P

and total current density,

J = Jf + Jb + Jp = Jf +∇×M +
∂P

∂t

where, f stands for free and b stands for bound
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Hence, the Gauss’s law becomes,

∇ ·E =
ρ

ε0
=

1

ε0
(ρf + ρb) =

1

ε0
(ρf −∇ · P )

⇒ ∇ · (ε0E + P ) = ρf

Or, ∇ ·D = ρf

where, the displacement vector D is defined as,

D = ε0E + P

The Ampere’s law can be expressed as,

∇×B = µ0J + µ0ε0
∂E

∂t

= µ0(Jf + Jb + Jp) + µ0ε0
∂E

∂t

= µ0

(
Jf +∇×M +

∂P

∂t

)
+ µ0ε0

∂E

∂t

∇×
(

1

µ0

B −M

)
= Jf +

∂

∂t
(ε0E + P )

∇×H = Jf +
∂D

∂t

where,

H =
1

µ0

B −M

Therefore, Maxwell’s equations inside material become,

(i) ∇ ·D = ρf

(ii) ∇ ·B = 0

(iii) ∇×E = −∂B
∂t

(iv) ∇×H = Jf +
∂D

∂t

(25)

where,

D = ε0E + P

H =
1

µ0

B −M

The equations takes simpler form when one deals with linear medium. In linear medium, polar-

ization P is linearly proportional to the electric field E and magnetization M is linearly proportional

to magnetic intensity H2. Basically, when electric field strength and magnetic field strength is quite

small, polarization and magnetization become proportional to field vectors. So, mathematically,

P ∝ E and M ∝H

2Not to consider that M ∝ B, because in any circumstances ∇ ·B = 0 but in general ∇ ·M 6= 0.
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The proportionality constant are taken in a clever form to express the Maxwell’s equations in a

simple form.

P = ε0χeE and M = χmH

where, χe is called electrical susceptibility and χm is magnetic susceptibility.

Now, for linear media,

D = ε0E + P = ε0(1 + χe)E = εE

where, ε = ε0(1 + χe)

H =
1

µ0

B −M =
1

µ0

B − χmH

⇒ H =
1

µ0(1 + χm)
B =

1

µ
B

where, µ = µ0(1 + χm)

So, for linear media in summary,

D = εE with ε = ε0(1 + χe)

H =
1

µ
B with µ = µ0(1 + χm)

(26)

Therefore, from relations (25) and (26) in linear media Maxwell’s equations ,

(i) ∇ ·E =
ρf
ε

(ii) ∇ ·B = 0

(iii) ∇×E = −∂B
∂t

(iv) ∇×B = µJf + µε
∂E

∂t

(27)

Note : In linear media, Maxwell’s equation have the identical form to that in the vacuum; only

replacements are ε0 → ε = ε0(1 + χe) and µ0 → µ = µ0(1 + χm). Furthermore, we have to

consider only the free charges i.e; free volume charge density ρf and free current density Jf which

are controllable.

Exercise 2. Consider a parallel plate capacitor is filled with linear dielectric of permittivity ε

and permeability µ0. Electrical conductivity of the dielectric is σ. Two ends of the capacitor are

connected to an alternating voltage source V (t) = V0 sin(ωt). Find the ratio of conduction current

Ic to the displacement current Id.

Solution :

Suppose the are of the plates is A and distance between two plates is d, then total resistance of

the dielectric material between two plates is,

R =
d

σA
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So, total conduction current passing through the capacitor,

Ic(t) =
V (t)

R
=
σAV (t)

d
=
σAV0
d

sin(ωt)

Electric field between two plates,

E(t) =
V (t)

d

Displacement current density,

Jd = ε
∂E(t)

∂t
=
ε

d

∂V (t)

∂t
=
εωV0
d

cos(ωt)

Displacement current,

Id(t) = AJd(t) =
AεωV0
d

cos(ωt)

Therefore,
Id,max
Ic,max

=
ωε

σ

1.3 Boundary conditions

Going from one dielectric medium to another it is interesting to see how the fields are connected

across the boundary or interface between two media. This study is very much important to un-

derstand the phenomena of reflection and transmission of electromagnetic field at some surface

separating two media. To analyze the connectivity of fields at boundary of two linear media it is

easier to adopt the integral form of Maxwell’s relations (i)-(iv) of (25).

The integral form of equations (25),

(i)

∮
S

D · da = Qf,enc.

(ii)

∮
S

B · da = 0

(iii)

∮
C

E · dl = − d

dt

∫
S

B · da

(iv)

∮
C

H · dl = If,enc. +
d

dt

∫
S

D · da

(28)

Refer to figure 2 (left), a surface is separating two media medium-1 and medium-2. Consider

a Gaussian surface of cylindrical shape with infinitesimal small height extended both side of the

surface. Electric flux through the curved surface is negligible due to its vanishingly small height;

only the flux need to be considered for two basal surfaces of area A (say). Then from relation (28-i),

(D1 · n̂−D2 · n̂)A = Qf,enc = σfA

or, D⊥1 −D⊥2 = σf

or, ε1E
⊥
1 − ε2E⊥2 = σf (for linear media)
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Figure 2:

In the same technique, using (28-ii),

B⊥1 −B⊥2 = 0

Above two relations gives us the connections of fields of their perpendicular components to the

boundary surface.

The boundary conditions related to the parallel components of the fields can be developed

with the help of figure-2 (right). Consider a Amperean loop abcda going across the surface with

vanishingly small height extended across the surface in both sides. Now consider the Maxwell’s

equation (28-iii), ∮
C

E · dl = − d

dt

∫
S

B · da

where the line integral goes around the Amperean loop a → b → c → d → a and surface area

is enclosed by this loop. According to consideration, width of the loop is vanishingly small i.e;

line segment ad and bc tends to zero resulting magnetic flux to be zero through the loop area.

Furthermore, due to same reason, line integration of E along b → c and d → a vanishes. So, the

above equation becomes,∫ b

a

E1 · dl +

∫ d

c

E2 · dl = 0

or,

∫ b

a

E1 · dl−
∫ c

d

E2 · dl = 0

or,

∫ b

a

(E1 −E2) · dl = 0 ; since segment lengths ab = dc

This is true for any arbitrary line element parallel to the surface, therefore, we have,

E
‖
1 −E

‖
2 = 0 across the boundary.

Now consider relation (28-iv),∮
C

H · dl = If,enc. +
d

dt

∫
S

D · da
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for the Amperean loop a → b → c → d → a depicted in figure-2(right). According to above

discussions, surface integration of D vanishes for this loop area. Also line integration of H becomes

zero for line segment b→ c and d→ a. So, the above relation becomes,∫ b

a

H1 · dl +

∫ d

c

H2 · dl = If,enc.

Suppose the surface caries a free surface current density3 Kf which gives the enclosed free

current If,enc. passing through the loop. If l̂ is the unit vector along a → b then dl = l̂dl. Hence,

the unit vector which is perpendicular to a→ b line segment and parallel to surface is,

t̂ = n̂× l̂

Here,

If,enc. =

∫ b

a

Kf · t̂ dl =

∫ b

a

Kf · (n̂× l̂)dl =

∫ b

a

(Kf × n̂) · dl

Therefore from the above equations we have,∫ b

a

H1 · dl +

∫ d

c

H2 · dl = If,enc. =

∫ b

a

(Kf × n̂) · dl

or,

∫ b

a

H1 · dl−
∫ c

d

H2 · dl =

∫ b

a

(Kf × n̂) · dl

or,

∫ b

a

(H1 −H2) · dl =

∫ b

a

(Kf × n̂) · dl

(29)

This is true for any arbitrary line element parallel to the surface, therefore, we have,

H
‖
1 −H

‖
2 = Kf × n̂ ; across the boundary.

Here we summarize the boundary conditions of fields at the boundary separating two

media

(i) D⊥1 −D⊥2 = σf

(ii) B⊥1 −B⊥2 = 0

(iii) E
‖
1 −E

‖
2 = 0

(iv) H
‖
1 −H

‖
2 = Kf × n̂

(30)

For linear media, the boundary conditions become,

(i) ε1E
⊥
1 − ε2E⊥2 = σf

(ii) B⊥1 −B⊥2 = 0

(iii) E
‖
1 −E

‖
2 = 0

(iv)
1

µ1

B
‖
1 −

1

µ2

B
‖
2 = Kf × n̂

(31)

3Surface current density is the amount of current flowing over the surface and passing through per unit line

segment which is perpendicular to flow and placed on the surface.
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1.4 Electromagnetic wave

Maxwell’s equations lead to wave equation for electric field E(r, t) and magnetic field B(r, t). This

is the most important outcome of Maxwell’s correction term in Ampere’s circuital law.

In vacuum, Maxwell’s equations are,

(i) ∇ ·E(r, t) = 0

(ii) ∇ ·B(r, t) = 0

(iii) ∇×E(r, t) = −∂B(r, t)

∂t

(iv) ∇×B(r, t) = µ0ε0
∂E(r, t)

∂t

Now taking curl of (iii),

∇× (∇×E) = − ∂

∂t
(∇×B)

or, −∇2E +∇ (∇ ·E)︸ ︷︷ ︸
0

= − ∂

∂t

(
µ0ε0

∂E

∂t

)

or, ∇2E − µ0ε0
∂2E

∂t2
= 0

Similarly, taking curl of (iv) and using Maxwell’s equations, one can establish similar kind of

differential equation for B.

Hence we have electromagnetic wave equations in vacuum,

∇2E − µ0ε0
∂2E

∂t2
= 0

and

∇2B − µ0ε0
∂2B

∂t2
= 0

(32)

I The standard form of wave equation associated with disturbance ψ(r, t) is,

∇2ψ(r, t)− 1

v2
∂2ψ(r, t)

∂t2
= 0 (33)

where, v is the speed of propagation of wave.

I The most important observation is that in electromagnetic wave, both electric field as well

as magnetic field exhibit wave nature. The electromagnetic wave in vacuum travels with constant

speed determined by two universal constants µ0 and ε0 as,

c =
1

√
µ0ε0

= 3× 108 m/s

Which is identical to the experimentally determined speed of visible light in vacuum. So, light

is nothing but electromagnetic wave specified by a range of frequency of electromagnetic wave.

Furthermore, the speed is independent of particular choice of frame of reference. That means,
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Galilean velocity addition is no longer valid for electromagnetic wave. The speed remain constant

at the value of 3× 108 m/s (in vacuum) whether the source and observer are in relative motion.

I In charge free and current free region of linear dielectric, the Maxwell’s equation take

the same form that of in vacuum with replacement of ε0 → ε = ε0(1+χe) and µ0 → µ = µ0(1+χm).

That means wave equations in such situation become,

∇2E − µε∂
2E

∂t2
= 0

and

∇2B − µε∂
2B

∂t2
= 0

(34)

The wave propagation speed is identified as,

v =
1
√
µε

Hence, it is interesting to identify the refractive index of a medium as,

n =
c

v
=

√
µε

µ0ε0

1.4.1 Solution of wave equation

The wave equation for E and B being identical, both will give identical solution. So, we seek

solution for any one of them say for E(r, t).

Consider Cartesian system (x, y, z) in which,

E(r, t) = E(x, y, z, t) = x̂Ex(x, y, z, t) + ŷEy(x, y, z, t) + ẑEz(x, y, z, t)

The wave equation,

∇2E =
1

c2
∂2E

∂t2

or, ∇2(x̂Ex + ŷEy + ẑEz) =
1

c2
∂2

∂t2
(x̂Ex + ŷEy + ẑEz)

Therefore, for each Cartesian component, wave equation shares the same form,

∇2Ej(x, y, z, t)−
1

c2
∂2

∂t2
Ej(x, y, z, t) = 0 ; j = x, y, z

or, (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Ej −

1

c2
∂2

∂t2
Ej = 0

The equation can be solved by the method of separation of variable. Consider,

Ej(x, y, z, t) = f1(x)f2(y)f3(z)f4(t)

14
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Then the above differential equation becomes,

f2f3f4
d2f1
dx2

+ f1f3f4
d2f2
dy2

+ f1f2f4
d2f3
dz2
− 1

c2
f1f2f3

d2f4
dt2

= 0

or,
1

f1(x)

d2f1(x)

dx2
+

1

f2(y)

d2f2(y)

dy2
+

1

f3(z)

d2f3(z)

dz2
− 1

c2f4(t)

d2f4(t)

dt2
= 0

This is true for all value of x, y, z, t, therefore it is possible only when each terms are equal to some

constants. Consider,

1

f1(x)

d2f1(x)

dx2
= −k2x

1

f2(y)

d2f2(y)

dy2
= −k2y

1

f3(z)

d2f3(z)

dz2
= −k2z

1

c2
1

f4(t)

d2f4(t)

dt2
= −k2

where,

k2 = k2x + k2y + k2z

The differential equations represents oscillatory behaviour. The solutions can be expressed as,

f1(x) = a1 exp(±ixkx) , f2(y) = a2 exp(±iyky) , f3(z) = a3 exp(±izkz) , f4(t) = a4 exp(±ick)

Therefore, the solution for Ej(x, y, z, t),

Ej(x, y, z, t) = f1(x)f2(y)f3(z)f4(t)

= a1a2a3a4 exp(±ixkx ± iyky ± izkz ± itck)

= E0j exp[i(±k · r ± ωt)]

where, we have introduced the wave vector

k = x̂kx + ŷky + ẑkz

and also we guess the angular frequency ω as,

ω = c|k| = ck

That means for each Cartesian component the solution of wave equation gives rise to the plane

wave solution

Ej(x, y, z, t) = E0j exp[i(±k · r ± ωt)] ; for j = x, y, z

So, for E(r, t),

E(r, t) = x̂Ex(x, y, z, t) + ŷEy(x, y, z, t) + ẑEz(x, y, z, t)

= (x̂E0x + ŷE0y + ẑE0z) exp[i(±k · r ± ωt)]
= E0 exp[i(±k · r ± ωt)]
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where E0 = (x̂E0x + ŷE0y + ẑE0z) is the amplitude of wave.

Solving the wave equation for B(r, t), one can obtain the similar expression.

I Conventionally, plane progressive and monochromatic electromagnetic wave prop-

agating along the direction of wave vector k is represented as,

E(r, t) = E0 exp[i(k · r − ωt)]
B(r, t) = B0 exp[i(k · r − ωt)]

(35)

I Wave equation in curvilinear system : This is to be noted that it is very much com-

plicated to solve vector wave equation in curvilinear coordinate systems (e.g. spherical polar). The

Laplacian ∇2 of a vector can not be decomposed according the vector components along the axes.

For example, in arbitrary curvilinear system (u1, u2, u3), one can express

E(r, t) = E(u1, u2, u3, t) = ê1E1(u1, u2, u3, t) + ê2E2(u1, u2, u3, t) + ê3E3(u1, u2, u3, t)

In cuvilinear system in general for i-th component,(
∇2E

)
i
6= ∇2Ei ; for i = 1, 2, 3

This is due to the fact that in cuvilinear system, direction of unit vectors varies from point to point,

so, spatial derivative of the unit vectors are non-vanishing in general. That means the expression

∇2(êiEi) can not be expressed as êi∇2Ei . So, in curvilinear system

∇2E(u1, u2, u3, t) 6=
3∑
i=1

êi∇2Ei(u1, u2, u3, t)

However, such decomposition is possible in Cartesian system, which makes the vector wave equation

solvable in Cartesian system.

1.4.2 Elecromagnetic fields and wave vector are mutually perpendicular

So, far we have obtained the plane wave solution for electromagnetic wave as represented by (35).

Still we don’t know the nature of the wave; whether it is transverse or longitudinal. Further,

Maxwell’s equations tell something about the connection of electric and magnetic fields in wave.

Following we address these queries. To proceed through these topics, it may be helpful to go through

the following Exercise - 3

Exercise 3. Suppose three Cartesian axes are reassigned as (x, y, z)→ (x1, x2, x3), then show that,

∂

∂xj
exp[i(k · r − ωt)] = ikj exp[i(k · r − ωt)] ; for j = 1, 2, 3 (36)

Solution :

16
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k = x̂1k1 + x̂2k2 + x̂3k3 =
3∑
l=1

x̂lkl

and r = x̂1x1 + x̂2x2 + x̂3x3 =
3∑

m=1

x̂mxm

Therefore,

k · r =
3∑
l=1

3∑
m=1

(x̂lkl) · (x̂mxm) =
3∑
l=1

3∑
m=1

klxm x̂l · x̂m︸ ︷︷ ︸
δlm

=
3∑
l=1

3∑
m=1

xmklδlm =
3∑
l=1

xlkl

Now,

∂

∂xj
exp[i(k · r − ωt)] = exp[i(k · r − ωt)] ∂

∂xj
[i(k · r − ωt)]

= exp[i(k · r − ωt)] ∂

∂xj

(
i

3∑
l=1

xlkl

)
; ω independent of x

= exp[i(k · r − ωt)]
(
i

3∑
l=1

klδjl

)
;
∂xl
∂xj

= δjl

∂

∂xj
exp[i(k · r − ωt)] = ikj exp[i(k · r − ωt)]

Hence proved

In Cartesian system (x1, x2, x3), the E(r, t) field for plane progressive electromagnetic wave can

be expressed as,

E(r, t) = E0 exp[i(k · r − ωt)] =

(
3∑
j=1

x̂jE0j

)
︸ ︷︷ ︸

E0

exp[i(k · r − ωt)]

Now evaluate the divergence for the above field. In Cartesian system it is,

∇ ·E(r, t) =
3∑
j=1

x̂j
∂

∂xj
·E0 exp[i(k · r − ωt)]

=
3∑
j=1

x̂j
∂

∂xj
·

3∑
l=1

x̂lE0l exp[i(k · r − ωt)]

=
3∑
j=1

E0j
∂

∂xj
exp[i(k · r − ωt)] ; x̂j · x̂l = δjl

=
3∑
j=1

E0j(ikj) exp[i(k · r − ωt)] ; using Exercise - 3

∇ ·E(r, t) = ik ·E(r, t)

17



Selected Topics on Electromagnetic Theory

Now, consider the Maxwell equation in charge free region,

∇ ·E(r, t) = 0

Therefore, we have obtained that

∇ ·E(r, t) = ik ·E(r, t) = 0 (37)

for electromagnetic field.

Since, the vector dot product of wave vector k and electric field E is zero, that means electric

field vibrates along perpendicular direction to the propagation direction k̂.

Similarly, starting from the expression B(r, t) = B0 exp[i(k · r − ωt)] and using the Maxwell

equation ∇ ·B(r, t) = 0, one can establish,

∇ ·B(r, t) = ik ·B(r, t) = 0 (38)

So, it is obvious that magnetic field vibrates perpendicular to propagation direction k̂.

I Both electric field E(r, t) and magnetic field B(r, t) is perpendicular to propagation di-

rection k̂. So, the electromagnetic wave is transverse in nature.

To establish the relation between E(r, t) and B(r, t) in electromagnetic field, consider the

Maxwell equation,

∇×E(r, t) = − ∂

∂t
B(r, t)

Before proceed to calculate curl of E(r, t), let’s be accustomed with Levi-Civita symbol E lmn

which helps to carry out vector cross product calculations in compact form. It is defined as,

Elmn =


1 ; for {lmn} = {123} , {231} , {312} (Clockwise combination)

−1 ; for {lmn} = {132} , {321} , {213} (Anti-clockwise combination)

0 ; for any repeated indices

(39)

The value of Levi-Civita symbol Elmn can be keep in mind with the help of the diagram 3. For

clockwise permutation of the indices it is +1 (shown in figure - 3(left)) and it is -1 for anti-clockwise

permutation (shown in figure - 3(right)). Suppose two vectors a and b are represented in Cartesian

Figure 3:

18
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system (x1, x2, x3) as,

a =
3∑
j=1

x̂jaj and b =
3∑
j=1

x̂jbj

then using Levi-Civita symbol,

a× b =
3∑

l,m,n=1

Elmn x̂lambn (40)

Now, for electromagnetic wave, the electric field in Cartesian system (x1, x2, x3) represented by,

E(r, t) =
3∑
j=1

x̂jEj(r, t) =
3∑
j=1

x̂j E0j exp[i(k · r − ωt)]︸ ︷︷ ︸
Ej(r,t)

=

(
3∑
j=1

x̂jE0j

)
︸ ︷︷ ︸

E0

exp[i(k · r − ωt)]

= E0 exp[i(k · r − ωt)]

The vector differential operator in Cartesian system (x1, x2, x3) is given by,

∇ =
3∑
j=1

x̂j
∂

∂xj

So, with the help of equation (40) in Cartesian system (x1, x2, x3),

∇×E(r, t) =
3∑

l,m,n=1

Elmn x̂l
∂

∂xm
En(r, t) ; En(r, t) = E0n exp[i(k · r − ωt)]

=
3∑

l,m,n=1

Elmn x̂lE0n
∂

∂xm
exp[i(k · r − ωt)]

=
3∑

l,m,n=1

Elmn x̂l(ikm)E0n exp[i(k · r − ωt)]︸ ︷︷ ︸
En(r,t)

; using Exercise - 3

= i

3∑
l,m,n=1

Elmn x̂lkmEn(r, t)︸ ︷︷ ︸
(k×E)

∇×E(r, t) = i k ×E(r, t)

Similar expression for B(r, t) can be obtained in the same way. Finally, we have

∇×E(r, t) = i k ×E(r, t)

∇×B(r, t) = i k ×B(r, t)
(41)

∂

∂t
B(r, t) =

∂

∂t
B0 exp[i(k · r − ωt)]

= −iωB0 exp[i(k · r − ωt)]
∂

∂t
B(r, t) = −iωB(r, t)

(42)
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Therefore,

∇×E(r, t) = − ∂

∂t
B(r, t)

or, i k ×E(r, t) = iωB(r, t)

or, B(r, t) =
k

ω
k̂ ×E(r, t) =

1

c
k̂ ×E(r, t) ; since ω = ck

(43)

Therefore, relation between E(r, t) and B(r, t) in electromagnetic wave,

B(r, t) =
1

c
k̂ ×E(r, t) (44)

So,

k̂ ·B(r, t) =
1

c
k̂ · (k̂ ×E(r, t)) =

1

c
E(r, t) · (k̂ × k̂) = 0

In this section we have established for electromagnetic wave,

k̂ ·B(r, t) = 0 and k̂ ·E(r, t) = 0 and E(r, t) ·B(r, t) = 0

I That means, in electromagnetic wave, electric field, magnetic field and wave vector

are mutually perpendicular to each other.

1.5 Potential formulation

From elementary idea of electrostatics it is observed that curl of electrostatic field E(r) vanishes,

∇×E(r) = 0

So that, electrostatic field can be derived from scalar potential φ(r) in the form of E(r) = −∇φ(r)

because curl of gradient always vanishes. Similar concept can be applied to the Maxwell’s relations

(8) to identify the potential functions from which electromagnetic fields E(r, t) and B(r, t) can be

derived.

Maxwell’s relation (8-ii) reads as,

∇ ·B(r, t) = 0

Therefore, the B field can be derived from vector potential A(r, t) in the following way,

B(r, t) =∇×A(r, t) (45)

because divergence of curl always zero.

Now, from (8-iii),

∇×E = −∂B
∂t

= − ∂

∂t
(∇×A)

or, ∇×
(
E +

∂A

∂t

)
= 0

Curl of gradient always zero, so, one can express,

E +
∂A

∂t
= −∇φ
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For time dependent phenomena, unlike to the static case,

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
(46)

• So, the scalar potential φ(r, t) and vector potential A(r, t) determine the electromagnetic

fields according to relations (45) and (46).

The fields do not correspond to unique potential functions. Potential functions are arbitrary

upto an additive constant which does not alter the fields. Potentials can be transformed in proper

way to new one such that fields remain invariant. Such transformations are known as gauge

transformation.

Consider the transformations,

A(r, t)→ A′(r, t) = A(r, t) +∇ξ(r, t)

and φ(r, t)→ φ′(r, t) = φ(r, t)− ∂

∂t
ξ(r, t)

where ξ(r, t) is any arbitrary scalar function.

Under this transformation,

B → B′ =∇×A′ =∇× (A +∇ξ) =∇×A +∇×∇ξ︸ ︷︷ ︸
0

=∇×A = B

because curl of gradient always zero.

The E field transforms as,

E(r, t)→ E′(r, t) = −∇φ′(r, t)− ∂A′(r, t)

∂t

= −∇φ(r, t)− ∂A(r, t)

∂t
+∇

(
∂ξ(r, t)

∂t

)
− ∂

∂t
∇ξ(r, t)

= −∇φ(r, t)− ∂A(r, t)

∂t
− ∂

∂t
∇ξ(r, t) +

∂

∂t
∇ξ(r, t)

= −∇φ(r, t)− ∂A(r, t)

∂t

= E(r, t)

I Under the following transformations of vector potential and scalar potential,

A(r, t)→ A′(r, t) = A(r, t) +∇ξ(r, t)

and, φ(r, t)→ φ′(r, t) = φ(r, t)− ∂

∂t
ξ(r, t)

(47)

both electric field E(r, t) and magnetic field B(r, t) remain unchanged. Hence the dynamics of a

charged body moving in electromagnetic fields remain unaltered while the potentials transform in

the prescribed way of (47).

I Maxwell’s field equations can be re-expressed in term of potentials φ(r, t) and A(r, t).
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Consider the Maxwell equation,

∇ ·E(r, t) =
ρ(r, t)

ε0

Using expression for E from (46)

∇ ·
(
−∇φ(r, t)− ∂A(r, t)

∂t

)
=
ρ(r, t)

ε0

or, ∇2φ+
∂

∂t
(∇ ·A) = − ρ

ε0
(48)

Now consider another one Maxwell equation,

∇×B = µ0J + µ0ε0
∂E

∂t

Using expression for E and B from (46) and (45)

or, ∇× (∇×A) = µ0J + µ0ε0
∂

∂t

(
−∇φ(r, t)− ∂A(r, t)

∂t

)
or, ∇2A−∇

(
∇ ·A + µ0ε0

∂φ

∂t

)
− µ0ε0

∂2A

∂t2
= −µ0J (49)

In Lorentz gauge,

∇ ·A + µ0ε0
∂φ

∂t
= 0 (50)

the equation (49) becomes,(
∇2 − 1

c2
∂2

∂t2

)
A(r, t) = −µ0J(r, t) ; since, c =

1
√
µ0ε0

(51)

and equation (48) becomes(
∇2 − 1

c2
∂2

∂t2

)
φ(r, t) = −ρ(r, t)

ε0
; since, c =

1
√
µ0ε0

(52)

Both scalar potential and the magnetic vector potential exhibit wave equation with source term.

1.5.1 Lagrangian of charged particle moving in electromagnetic field

Force experienced by a point charge q moving in electromagnetic field (given by E(r, t) and B(r, t))

is described by Lorentz force,

F = q(E + v ×B) (53)

From, section-1.5,

B(r, t) =∇×A(r, t)

and, E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t

Therefore, one can express Lorentz force in terms of potential functions,

F = q(E + v ×B)

= q

[
−∇φ(r, t)− ∂A(r, t)

∂t
+ v × (∇×A(r, t))

]
(54)
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Now use the vector identity,

∇(v ·A) = v × (∇×A) + A× (∇× v) + (v · ∇)A + (A · ∇)v

generalized velocity v is independent of generalized position

so, space derivative of v vanishes

⇒ ∇(v ·A) = v × (∇×A) + (v · ∇)A

⇒ v × (∇×A) =∇(v ·A)− (v · ∇)A

So, equation (54) becomes,

F = q

[
−∇φ(r, t)− ∂A(r, t)

∂t
+∇(v ·A)− (v · ∇)A

]
(55)

Now, consider the Cartesian coordinate axes x1, x2, x3 (which are identical to x, y, z).

A = A(r, t) = A(x1, x2, x3, t)

⇒ dA =
3∑
i=1

∂A

∂xi
dxi +

∂A

∂t
dt

⇒ dA

dt
=

3∑
i=1

vi
∂A

∂xi
+
∂A

∂t

⇒ dA

dt
= (v · ∇)A +

∂A

∂t

⇒ (v · ∇)A =
dA

dt
− ∂A

∂t

Now, substitute this expression of (v · ∇)A into equation (55) and get,

F = −∇(qφ− qv ·A)− d

dt
(qA) (56)

This is the expression for electromagnetic force (in terms of potentials φ(r, t) and A(r, t)) on a

moving charged particle.

The equation of motion for this force,

m
dv

dt
− F = 0

or, m
dv

dt
+∇(qφ− qv ·A) +

d

dt
(qA) = 0

For the j-th Cartesian component, equation of motion,

m
dvj
dt

+
∂

∂xj
(qφ− qv ·A) +

d

dt
(qAj) = 0 (57)

The Lagrangian L(r,v, t) for the charged particle moving in electromagnetic field is to be iden-

tified such that the Euler-Lagrange equation of motion,

d

dt

(
∂L

∂vj

)
− ∂L

∂xj
= 0
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gives us the identical equation of motion expressed by (57).

To get the explicit expression for Lagrangian, we will rearrange the equation of motion (57) in

the form of Euler-Lagrange equation.

To rearrange the first term of (57) consider,

∂vi
∂vj

= δij and v2 =
3∑
i=1

vivi

Therefore,

m
dvj
dt

=
d

dt

∂

∂vj

(
1

2
m

3∑
i=1

vivi

)
=

d

dt

∂

∂vj

(
1

2
mv2

)
=

d

dt

∂T

∂vj
(58)

The kinetic energy T has no explicit space dependency, therefore,

∂T

∂xj
= 0 ; for any of j = 1, 2, 3

So, second term of (57),

∂

∂xj
(qφ− qv ·A) = − ∂

∂xj
[T − q(φ− v ·A)] (59)

The scalar potential φ(r, t) and the vector potential A(r, t) does not have any velocity depen-

dency, therefore,
∂φ

∂vj
= 0 =

∂A

∂vj
; for any of j = 1, 2, 3

and
3∑
i=1

viAi = v ·A

So, the third term of (57),

d

dt
(qAj) = − d

dt

∂

∂vj

(
qφ− q

3∑
i=1

viAi

)
= − d

dt

∂

∂vj
[q(φ− v ·A)] (60)

Now substitute several terms from (58), (59) and (60) into (57),

d

dt

∂T

∂vj
− ∂

∂xj
[T − q(φ− v ·A)]− d

dt

∂

∂vj
[q(φ− v ·A)] = 0

or,
d

dt

∂

∂vj
[T − q(φ− v ·A)]− ∂

∂xj
[T − q(φ− v ·A)] = 0

or,
d

dt

(
∂L

∂vj

)
− ∂L

∂xj
= 0 ; the Euler-Lagrange equation

(61)

Here, we able to find out the appropriate Lagrangian from the equation of motion as,

L = T − q(φ− v ·A) (62)

This is the Lagrangian for charged particle moving in electromagnetic field.

The potential U is velocity dependent

U = q(φ− v ·A)
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1.5.2 Transformation of Lagrangian due to gauge transformation

It has been discussed that under the transformation of φ(r, t) and A(r, t) according to (47), the

electromagnetic fields E(r, t) and B(r, t) remain unaltered. So, the Lorentz force expression (53)

also to be kept unchanged. Let’s check what happens to the Lagrangian due to the transformation

of potentials,

A(r, t)→ A′(r, t) = A(r, t) +∇ξ(r, t)

and, φ(r, t)→ φ′(r, t) = φ(r, t)− ∂

∂t
ξ(r, t)

The transformed Lagrangian,

L′(r,v, t) = T − q(φ′ − v ·A′)

= T − q
(
φ− ∂

∂t
ξ(r, t)− v ·A− v · ∇ξ(r, t)

)
= T − q(φ− v ·A)︸ ︷︷ ︸

L

−
(
v · ∇ξ(r, t) +

∂

∂t
ξ(r, t)

)

= L−
(
v · ∇ξ(r, t) +

∂

∂t
ξ(r, t)

)
(63)

Now,

ξ = ξ(r, t) = ξ(x1, x2, x3, t)

⇒ dξ(r, t) =
3∑
i=1

∂ξ

∂xi
dxi +

∂ξ

∂t
dt

⇒ dξ

dt
=

3∑
i=1

vi
∂ξ

∂xi
+
∂ξ

∂t
= v · ∇ξ(r, t) +

∂

∂t
ξ(r, t)

So, from the last expression of (63),

L′ = L− dξ(r, t)

dt

The Lagrangian is transformed such that it is arbitrary upto an additive factor which is total time

derivative of a function of space and time only (here ξ(r, t)). From the idea of Lagrangian dynamics,

it is known that such an addition does not affect the Euler-Lagrange equation of motion. Therefore,

gauge transformations of potentials do not alter the force acting on charged particle and hence the

equation of motion remain unchanged.

1.5.3 Hamiltonian

The Lagrangian for charged particle moving in electromagnetic fields is given by relation (62) as,

L = T − q[φ(r, t)− v ·A(r, t)]

=
1

2
m

3∑
i=1

vivi︸ ︷︷ ︸
T

−qφ(r, t) + q
3∑
i=1

viAi(r, t)︸ ︷︷ ︸
v·A
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Now the j−th component of generalized momentum,

pj =
∂L

∂vj

=
∂

∂vj

(
1

2
m

3∑
i=1

vivi − qφ(r, t) + q

3∑
i=1

viAi(r, t)

)

= m

3∑
i=1

viδij + q

3∑
i=1

Ai(r, t)δij ; since
∂vi
∂vj

= δij

pj = mvj + qAj(r, t)

The generalized momentum,

p = mv + qA(r, t) (64)

where,

mv → mechanical momentum due to motion of charged particle.

qA(r, t)→ field momentum carried by electromagnetic fields.

The Hamiltonian can be formulated as,

H =
3∑
i=1

pivi − L ; Basic definition

= p · v − T + qφ− qv ·A ; Lagrangian expression from (62)

Now put from equation (64), v =
1

m
(p− qA)

H =
1

m
p · (p− qA)− 1

2m
(p− qA)2 + qφ− q

m
(p− qA) ·A

=
1

2m
(p− qA)2 + qφ

So, the Hamiltonian of charged particles moving in electromagnetic field,

H(r,p, t) =
1

2m
[p− qA(r, t)]2 + qφ(r, t) (65)

2 Energy conservation : Poynting’s theorem

Energy conservation is one of the fundamental laws of physics. If total energy of a system is

increased by some amount that means the same amount of energy is flowed into the system and on

the other hand when some amount of energy is flowed out form system then same amount of energy

of the system will be decreased. The energy conservation must leads to a continuity equation in

the form of,
∂u

∂t
+∇ · S = 0

where, u is the energy density, i.e; energy per unit volume. S is the energy flux density, i.e; energy

flowing per unit time across unit surface along the direction of energy flow.

Following, we discuss the energy conservation phenomena in electrodynamics and also going to

develop the continuity equation associated with the energy conservation.
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Consider a region of volume V enclosed by surface R, in which there are some charges of charge

density ρ(r, t) and currents of current density J(r, t); both charge density and current density are

space-time dependent variable. Furthermore, there will be electric field E(r, t) and magnetic field

B(r, t). This electromagnetic field originates from the charges and currents present within the

region plus some external sources can give rise to fields within the region of interest R.

Suppose, small volume element dτ within the region is moving with velocity v.

Now, total charge contained in the volume element is dq = ρ(r, t)dτ , then Lorentz force acting

on the small element is,

F = dq(E + v ×B) = (E + v ×B)ρ(r, t)dτ

If within small time interval dt, the volume element is displaced by dl = vdt, then work done on

the whole system is,

dW =

∫
V

F · dl

or, dW =

∫
V

ρ(E + v ×B)dτ︸ ︷︷ ︸
F

· vdt︸︷︷︸
dl

or, dW =

∫
V

ρE · v dτ dt ; since, (v ×B) · v = 0

or, dW =

∫
V

E · J dτ dt ; since, J = ρv

Now put J form Maxwell equation : ∇×B = µ0J + µ0ε0
∂E

∂t

or,
dW

dt
=

∫
V

E ·
(

1

µ0

∇×B − ε0
∂E

∂t

)
dτ

or,
dW

dt
=

1

µ0

∫
V

E · (∇×B) dτ − d

dt

∫
V

ε0
2
E2 dτ ; since, E2 = E ·E

Now use the vector identity : ∇ · (E ×B) = B · (∇×E)−E · (∇×B)

or,
dW

dt
=

1

µ0

∫
V

B · (∇×E) dτ − 1

µ0

∫
V

∇ · (E ×B) dτ − d

dt

∫
V

ε0
2
E2 dτ

Now use Maxwell equation : ∇×E = −∂B
∂t

or,
dW

dt
= − 1

µ0

∫
V

B · ∂B
∂t

dτ − 1

µ0

∫
V

∇ · (E ×B) dτ − d

dt

∫
V

ε0
2
E2 dτ

or,
dW

dt
= − d

dt

∫
V

(
ε0
2
E2 +

1

2µ0

B2

)
dτ − 1

µ0

∫
V

∇ · (E ×B)dτ (66)

The work done on the system will be stored as mechanical energy. If umech(r, t) is the mechanical

energy density of the system of charges, then total mechanical energy will be equal to,∫
V

umech(r, t) dτ

Rate of work done must be equal to the rate of change of mechanical energy, therefore,

dW

dt
=

d

dt

∫
V

umech(r, t) dτ
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So, the equation (66) becomes,∫
V

[
∂

∂t

(
umech +

ε0
2
E2 +

1

2µ0

B2

)
+∇ ·

(
1

µ0

E ×B

)]
dτ = 0 (67)

This is true for any arbitrary volume, so, we have continuity equation in the form of,

Continuity equation :
∂u

∂t
+∇ · S = 0

where, Poynting vector : S =
1

µ0

(E ×B)

where, u = umech + uem

Electrmagnetic energy density : uem =
1

2

(
ε0E

2 +
1

µ0

B2

)
(68)

I Poynting’s Theorem : The work on the charges by the electromagnetic force is equal the

to decrease in energy stored in the field, less the energy that flowed out through the surface.4

Exercise 4. Suppose Aeiαx +Beiβx = Ceiγx for some nonzero constants A, B, C, α, β, γ and for

all x. Then show that α = β = γ and A+B = C

Solution :

The relation is valid for all x, so, at x = 0,

A+B = C

Differentiating the relation,

iαAeiαx + iβBeiβx = iγCeiγx

at x = 0 : αA+ βB = γC

Differentiating again,

− α2Aeiαx − β2Beiβx = −γ2Ceiγx

At x = 0,

α2A+ β2B = γ2C

or, C(α2A+ β2B) = (γC)2 ; multiplying both side by C

or, (A+B)(α2A+ β2B) = (αA+ βB)2 ; using expression for C and γC

or, (αA)2 + (βB)2 + (α2 + β2)AB − (αA+ βB)2 = 0

or, (α2 + β2 − 2αβ)AB = 0

or, (α− β)2AB = 0

or, α = β ; since A, B 6= 0

We have,

αA+ βB = γC

or, α(A+B) = γC ; since α = β

or, α = γ ; since A+B = C

(69)

4Taken from D. J. Griffiths, Introduction to Electrodynamics, 3rd Eds., Prentice Hall (1999).
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