
1

What is Data?
Data is nothing but facts and statistics stored or free flowing over a network, generally it's

raw and unprocessed. For example: When you visit any website, they might store you IP
address, that is data, in return they might add a cookie in your browser, marking you that
you visited the website, that is data, your name, it's data, your age, it's data.

Data becomes information when it is processed, turning it into something meaningful. Like,
based on the cookie data saved on user's browser, if a website can analyse that generally
men of age 20-25 visit us more, that is information, derived from the data collected.

What is a Database?
A Database is a collection of related data organised in a way that data can be easily
accessed, managed and updated. Database can be software based or hardware based,
with one sole purpose, storing data.

During early computer days, data was collected and stored on tapes, which were mostly
write-only, which means once data is stored on it, it can never be read again. They were
slow and bulky, and soon computer scientists realised that they needed a better solution to
this problem.

Larry Ellison, the co-founder of Oracle was amongst the first few, who realised the need
for a software based Database Management System.

What is DBMS?
A DBMS is a software that allows creation, definition and manipulation of database,
allowing users to store, process and analyse data easily. DBMS provides us with an
interface or a tool, to perform various operations like creating database, storing data in it,
updating data, creating tables in the database and a lot more.

DBMS also provides protection and security to the databases. It also maintains data
consistency in case of multiple users.

Here are some examples of popular DBMS used these days:

 MySql

 Oracle

 SQL Server

2

 IBM DB2

 PostgreSQL

 Amazon SimpleDB (cloud based) etc.

Characteristics of Database

Management System
A database management system has following characteristics:

1. Data stored into Tables: Data is never directly stored into the database. Data is stored

into tables, created inside the database. DBMS also allows to have relationships

between tables which makes the data more meaningful and connected. You can easily

understand what type of data is stored where by looking at all the tables created in a

database.

2. Reduced Redundancy: In the modern world hard drives are very cheap, but earlier

when hard drives were too expensive, unnecessary repetition of data in database was a

big problem. But DBMS follows Normalisation which divides the data in such a way

that repetition is minimum.

3. Data Consistency: On Live data, i.e. data that is being continuosly updated and added,

maintaining the consistency of data can become a challenge. But DBMS handles it all

by itself.

4. Support Multiple user and Concurrent Access: DBMS allows multiple users to work

on it(update, insert, delete data) at the same time and still manages to maintain the data

consistency.

5. Query Language: DBMS provides users with a simple Query language, using which

data can be easily fetched, inserted, deleted and updated in a database.

6. Security: The DBMS also takes care of the security of data, protecting the data from

un-authorised access. In a typical DBMS, we can create user accounts with different

3

access permissions, using which we can easily secure our data by restricting user

access.

7. DBMS supports transactions, which allows us to better handle and manage data

integrity in real world applications where multi-threading is extensively used.

Advantages of DBMS

 Segregation of applicaion program.

 Minimal data duplicacy or data redundancy.

 Easy retrieval of data using the Query Language.

 Reduced development time and maintainance need.

 With Cloud Datacenters, we now have Database Management Systems capable of

storing almost infinite data.

 Seamless integration into the application programming languages which makes it very

easier to add a database to almost any application or website.

Disadvantages of DBMS

 It's Complexity

 Except MySQL, which is open source, licensed DBMSs are generally costly.

 They are large in size.

Components of DBMS
The database management system can be divided into five major components, they are:

1. Hardware

4

2. Software

3. Data

4. Procedures

5. Database Access Language

Let's have a simple diagram to see how they all fit together to form a database
management system.

DBMS Components: Hardware
When we say Hardware, we mean computer, hard disks, I/O channels for data, and any
other physical component involved before any data is successfully stored into the memory.

When we run Oracle or MySQL on our personal computer, then our computer's Hard Disk,
our Keyboard using which we type in all the commands, our computer's RAM, ROM all
become a part of the DBMS hardware.

5

DBMS Components: Software
This is the main component, as this is the program which controls everything. The DBMS
software is more like a wrapper around the physical database, which provides us with an
easy-to-use interface to store, access and update data.

The DBMS software is capable of understanding the Database Access Language and
intrepret it into actual database commands to execute them on the DB.

DBMS Components: Data
Data is that resource, for which DBMS was designed. The motive behind the creation of
DBMS was to store and utilise data.

In a typical Database, the user saved Data is present and meta data is stored.

Metadata is data about the data. This is information stored by the DBMS to better
understand the data stored in it.

For example: When I store my Name in a database, the DBMS will store when the name
was stored in the database, what is the size of the name, is it stored as related data to
some other data, or is it independent, all this information is metadata.

DBMS Components: Procedures
Procedures refer to general instructions to use a database management system. This
includes procedures to setup and install a DBMS, To login and logout of DBMS software, to
manage databases, to take backups, generating reports etc.

DBMS Components: Database Access Language
Database Access Language is a simple language designed to write commands to access,
insert, update and delete data stored in any database.

A user can write commands in the Database Access Language and submit it to the DBMS
for execution, which is then translated and executed by the DBMS.

User can create new databases, tables, insert data, fetch stored data, update data and
delete the data using the access language.

6

Users

 Database Administrators: Database Administrator or DBA is the one who manages

the complete database management system. DBA takes care of the security of the

DBMS, it's availability, managing the license keys, managing user accounts and access

etc.

 Application Programmer or Software Developer: This user group is involved in

developing and desiging the parts of DBMS.

 End User: These days all the modern applications, web or mobile, store user data. How

do you think they do it? Yes, applications are programmed in such a way that they

collect user data and store the data on DBMS systems running on their server. End

users are the one who store, retrieve, update and delete data.

Understanding DBMS
Architecture
A Database Management system is not always directly available for users and applications
to access and store data in it. A Database Management system can be centralised(all the
data stored at one location), decentralised(multiple copies of database at different
locations) or hierarchical, depending upon its architecture.

1-tier DBMS architecture also exist, this is when the database is directly available to the
user for using it to store data. Generally such a setup is used for local application
development, where programmers communicate directly with the database for quick
response.

Database Architecture is logically of two types:

1. 2-tier DBMS architecture

2. 3-tier DBMS architecture

2-tier DBMS Architecture

7

2-tier DBMS architecture includes an Application layer between the user and the DBMS,
which is responsible to communicate the user's request to the database management
system and then send the response from the DBMS to the user.

An application interface known as ODBC(Open Database Connectivity) provides an API
that allow client side program to call the DBMS. Most DBMS vendors provide ODBC drivers
for their DBMS.

Such an architecture provides the DBMS extra security as it is not exposed to the End User
directly. Also, security can be improved by adding security and authentication checks in the
Application layer too.

3-tier DBMS Architecture
3-tier DBMS architecture is the most commonly used architecture for web applications.

8

It is an extension of the 2-tier architecture. In the 2-tier architecture, we have an application
layer which can be accessed programatically to perform various operations on the DBMS.
The application generally understands the Database Access Language and processes end
users requests to the DBMS.

In 3-tier architecture, an additional Presentation or GUI Layer is added, which provides a
graphical user interface for the End user to interact with the DBMS.

For the end user, the GUI layer is the Database System, and the end user has no idea
about the application layer and the DBMS system.

If you have used MySQL, then you must have seen PHPMyAdmin, it is the best example of
a 3-tier DBMS architecture.

DBMS Database Models
A Database model defines the logical design and structure of a database and defines how
data will be stored, accessed and updated in a database management system. While
the Relational Model is the most widely used database model, there are other models too:

 Hierarchical Model

 Network Model

 Entity-relationship Model

9

 Relational Model

Hierarchical Model
This database model organises data into a tree-like-structure, with a single root, to which all
the other data is linked. The heirarchy starts from the Root data, and expands like a tree,
adding child nodes to the parent nodes.

In this model, a child node will only have a single parent node.

This model efficiently describes many real-world relationships like index of a book, recipes
etc.

In hierarchical model, data is organised into tree-like structure with one one-to-many
relationship between two different types of data, for example, one department can have
many courses, many professors and of-course many students.

Network Model
This is an extension of the Hierarchical model. In this model data is organised more like a
graph, and are allowed to have more than one parent node.

In this database model data is more related as more relationships are established in this
database model. Also, as the data is more related, hence accessing the data is also easier
and fast. This database model was used to map many-to-many data relationships.

This was the most widely used database model, before Relational Model was introduced.

10

Entity-relationship Model
In this database model, relationships are created by dividing object of interest into entity and
its characteristics into attributes.

Different entities are related using relationships.

E-R Models are defined to represent the relationships into pictorial form to make it easier for
different stakeholders to understand.

This model is good to design a database, which can then be turned into tables in relational
model(explained below).

Let's take an example, If we have to design a School Database, then Student will be
an entity with attributes name, age, address etc. As Address is generally complex, it can
be another entity with attributes street name, pincode, city etc, and there will be a
relationship between them.

Relationships can also be of different types. To learn about E-R Diagrams in details, click
on the link.

https://www.studytonight.com/dbms/er-diagram.php

11

Relational Model
In this model, data is organised in two-dimensional tables and the relationship is
maintained by storing a common field.

This model was introduced by E.F Codd in 1970, and since then it has been the most widely
used database model, infact, we can say the only database model used around the world.

The basic structure of data in the relational model is tables. All the information related to a
particular type is stored in rows of that table.

Hence, tables are also known as relations in relational model.

In the coming tutorials we will learn how to design tables, normalize them to reduce data
redundancy and how to use Structured Query language to access data from tables.

12

Basic Concepts of ER Model in
DBMS
As we described in the tutorial Database models, Entity-relationship model is a model used
for design and representation of relationships between data.

The main data objects are termed as Entities, with their details defined as attributes, some
of these attributes are important and are used to identity the entity, and different entities are
related using relationships.

In short, to understand about the ER Model, we must understand about:

 Entity and Entity Set

 What are Attributes? And Types of Attributes.

 Keys

 Relationships

Let's take an example to explain everything. For a School Management Software, we will
have to store Student information, Teacher information, Classes, Subjects taught in each
class etc.

13

ER Model: Entity and Entity Set
Considering the above example, Student is an entity, Teacher is an entity,
similarly, Class, Subjectetc are also entities.

An Entity is generally a real-world object which has characteristics and holds relationships
in a DBMS.

If a Student is an Entity, then the complete dataset of all the students will be the Entity Set

ER Model: Attributes
If a Student is an Entity, then student's roll no., student's name, student's age,
student's gender etc will be its attributes.

An attribute can be of many types, here are different types of attributes defined in ER
database model:

1. Simple attribute: The attributes with values that are atomic and cannot be broken down

further are simple attributes. For example, student's age.

2. Composite attribute: A composite attribute is made up of more than one simple

attribute. For example, student's address will contain, house no., street

name, pincode etc.

3. Derived attribute: These are the attributes which are not present in the whole database

management system, but are derived using other attributes. For example, average age

of students in a class.

4. Single-valued attribute: As the name suggests, they have a single value.

5. Multi-valued attribute: And, they can have multiple values.

ER Model: Keys
If the attribute roll no. can uniquely identify a student entity, amongst all the students, then
the attribute roll no. will be said to be a key.

14

Following are the types of Keys:

1. Super Key

2. Candidate Key

3. Primary Key

We have covered Keys in details here in Database Keys tutorial.

ER Model: Relationships
When an Entity is related to another Entity, they are said to have a relationship. For
example, A ClassEntity is related to Student entity, becasue students study in classes,
hence this is a relationship.

Depending upon the number of entities involved, a degree is assigned to relationships.

For example, if 2 entities are involved, it is said to be Binary relationship, if 3 entities are
involved, it is said to be Ternary relationship, and so on.

In the next tutorial, we will learn how to create ER diagrams and design databases using ER
diagrams.

Working with ER Diagrams
ER Diagram is a visual representation of data that describes how data is related to each
other. In ER Model, we disintegrate data into entities, attributes and setup relationships
between entities, all this can be represented visually using the ER diagram.

For example, in the below diagram, anyone can see and understand what the diagram
wants to convey: Developer develops a website, whereas a Visitor visits a website.

https://www.studytonight.com/dbms/database-key.php

15

Components of ER Diagram
Entitiy, Attributes, Relationships etc form the components of ER Diagram and there are
defined symbols and shapes to represent each one of them.

Let's see how we can represent these in our ER Diagram.

Entity

Simple rectangular box represents an Entity.

Relationships between Entities - Weak and Strong

Rhombus is used to setup relationships between two or more entities.

16

Attributes for any Entity

Ellipse is used to represent attributes of any entity. It is connected to the entity.

Weak Entity

A weak Entity is represented using double rectangular boxes. It is generally connected to
another entity.

Key Attribute for any Entity

To represent a Key attribute, the attribute name inside the Ellipse is underlined.

Derived Attribute for any Entity

Derived attributes are those which are derived based on other attributes, for example, age
can be derived from date of birth.

To represent a derived attribute, another dotted ellipse is created inside the main ellipse.

Multivalued Attribute for any Entity

Double Ellipse, one inside another, represents the attribute which can have multiple values.

17

Composite Attribute for any Entity

A composite attribute is the attribute, which also has attributes.

ER Diagram: Entity
An Entity can be any object, place, person or class. In ER Diagram, an entity is
represented using rectangles. Consider an example of an Organisation- Employee,
Manager, Department, Product and many more can be taken as entities in an Organisation.

The yellow rhombus in between represents a relationship.

18

ER Diagram: Weak Entity
Weak entity is an entity that depends on another entity. Weak entity doesn't have any key
attribute of its own. Double rectangle is used to represent a weak entity.

ER Diagram: Attribute
An Attribute describes a property or characterstic of an entity. For
example, Name, Age, Address etc can be attributes of a Student. An attribute is
represented using eclipse.

19

ER Diagram: Key Attribute
Key attribute represents the main characterstic of an Entity. It is used to represent a Primary
key. Ellipse with the text underlined, represents Key Attribute.

ER Diagram: Composite Attribute

20

An attribute can also have their own attributes. These attributes are known
as Composite attributes.

ER Diagram: Relationship
A Relationship describes relation between entities. Relationship is represented using
diamonds or rhombus.

There are three types of relationship that exist between Entities.

21

1. Binary Relationship

2. Recursive Relationship

3. Ternary Relationship

ER Diagram: Binary Relationship
Binary Relationship means relation between two Entities. This is further divided into three
types.

One to One Relationship

This type of relationship is rarely seen in real world.

The above example describes that one student can enroll only for one course and a course
will also have only one Student. This is not what you will usually see in real-world
relationships.

One to Many Relationship

The below example showcases this relationship, which means that 1 student can opt for
many courses, but a course can only have 1 student. Sounds weird! This is how it is.

22

Many to One Relationship

It reflects business rule that many entities can be associated with just one entity. For
example, Student enrolls for only one Course but a Course can have many Students.

Many to Many Relationship

23

The above diagram represents that one student can enroll for more than one courses. And
a course can have more than 1 student enrolled in it.

ER Diagram: Recursive Relationship
When an Entity is related with itself it is known as Recursive Relationship.

24

ER Diagram: Ternary Relationship
Relationship of degree three is called Ternary relationship.

A Ternary relationship involves three entities. In such relationships we always consider two
entites together and then look upon the third.

For example, in the diagram above, we have three related
entities, Company, Product and Sector. To understand the relationship better or to define
rules around the model, we should relate two entities and then derive the third one.

A Company produces many Products/ each product is produced by exactly one company.

A Company operates in only one Sector / each sector has many companies operating in it.

Considering the above two rules or relationships, we see that although the complete
relationship involves three entities, but we are looking at two entities at a time.

The Enhanced ER Model
As the complexity of data increased in the late 1980s, it became more and more difficult to
use the traditional ER Model for database modelling. Hence some improvements or
enhancements were made to the existing ER Model to make it able to handle the complex
applications better.

Hence, as part of the Enhanced ER Model, along with other improvements, three new
concepts were added to the existing ER Model, they were:

25

1. Generalization

2. Specialization

3. Aggregration

Let's understand what they are, and why were they added to the existing ER Model.

Generalization
Generalization is a bottom-up approach in which two lower level entities combine to form a
higher level entity. In generalization, the higher level entity can also combine with other
lower level entities to make further higher level entity.

It's more like Superclass and Subclass system, but the only difference is the approach,
which is bottom-up. Hence, entities are combined to form a more generalised entity, in other
words, sub-classes are combined to form a super-class.

For example, Saving and Current account types entities can be generalised and an entity
with name Account can be created, which covers both.

26

Specialization
Specialization is opposite to Generalization. It is a top-down approach in which one higher
level entity can be broken down into two lower level entity. In specialization, a higher level
entity may not have any lower-level entity sets, it's possible.

Aggregration
Aggregration is a process when relation between two entities is treated as a single entity.

27

In the diagram above, the relationship between Center and Course together, is acting as
an Entity, which is in relationship with another entity Visitor. Now in real world, if a Visitor or
a Student visits a Coaching Center, he/she will never enquire about the center only or just
about the course, rather he/she will ask enquire about both.

Codd's Rule for Relational DBMS
E.F Codd was a Computer Scientist who invented the Relational model for Database
management. Based on relational model, the Relational database was created. Codd
proposed 13 rules popularly known as Codd's 12 rules to test DBMS's concept against his
relational model. Codd's rule actualy define what quality a DBMS requires in order to
become a Relational Database Management System(RDBMS). Till now, there is hardly any
commercial product that follows all the 13 Codd's rules. Even Oracle follows only eight and
half(8.5) out of 13. The Codd's 12 rules are as follows.

Rule zero
This rule states that for a system to qualify as an RDBMS, it must be able to manage
database entirely through the relational capabilities.

28

Rule 1: Information rule
All information(including metadata) is to be represented as stored data in cells of tables.
The rows and columns have to be strictly unordered.

Rule 2: Guaranted Access
Each unique piece of data(atomic value) should be accesible by : Table Name + Primary
Key(Row) + Attribute(column).

NOTE: Ability to directly access via POINTER is a violation of this rule.

Rule 3: Systematic treatment of NULL
Null has several meanings, it can mean missing data, not applicable or no value. It should
be handled consistently. Also, Primary key must not be null, ever. Expression on NULL must
give null.

Rule 4: Active Online Catalog
Database dictionary(catalog) is the structure description of the complete Database and it
must be stored online. The Catalog must be governed by same rules as rest of the
database. The same query language should be used on catalog as used to query database.

Rule 5: Powerful and Well-Structured Language
One well structured language must be there to provide all manners of access to the data
stored in the database. Example: SQL, etc. If the database allows access to the data

without the use of this language, then that is a violation.

Rule 6: View Updation Rule
All the view that are theoretically updatable should be updatable by the system as well.

29

Rule 7: Relational Level Operation
There must be Insert, Delete, Update operations at each level of relations. Set operation
like Union, Intersection and minus should also be supported.

Rule 8: Physical Data Independence
The physical storage of data should not matter to the system. If say, some file supporting
table is renamed or moved from one disk to another, it should not effect the application.

Rule 9: Logical Data Independence
If there is change in the logical structure(table structures) of the database the user view of
data should not change. Say, if a table is split into two tables, a new view should give result
as the join of the two tables. This rule is most difficult to satisfy.

Rule 10: Integrity Independence
The database should be able to enforce its own integrity rather than using other programs.
Key and Check constraints, trigger etc, should be stored in Data Dictionary. This also
make RDBMSindependent of front-end.

Rule 11: Distribution Independence
A database should work properly regardless of its distribution across a network. Even if a
database is geographically distributed, with data stored in pieces, the end user should get
an impression that it is stored at the same place. This lays the foundation of distributed
database.

Rule 12: Nonsubversion Rule

30

If low level access is allowed to a system it should not be able to subvert or bypass integrity
rules to change the data. This can be achieved by some sort of looking or encryption.

Basic Relational DBMS Concepts
A Relational Database management System(RDBMS) is a database management
system based on the relational model introduced by E.F Codd. In relational model, data is
stored in relations(tables) and is represented in form of tuples(rows).

RDBMS is used to manage Relational database. Relational database is a collection of
organized set of tables related to each other, and from which data can be accessed easily.
Relational Database is the most commonly used database these days.

RDBMS: What is Table ?
In Relational database model, a table is a collection of data elements organised in terms of
rows and columns. A table is also considered as a convenient representation of relations.
But a table can have duplicate row of data while a true relation cannot have duplicate data.
Table is the most simplest form of data storage. Below is an example of an Employee table.

ID Name Age Salary

1 Adam 34 13000

2 Alex 28 15000

3 Stuart 20 18000

4 Ross 42 19020

RDBMS: What is a Tuple?

31

A single entry in a table is called a Tuple or Record or Row. A tuple in a table represents a
set of related data. For example, the above Employee table has 4 tuples/records/rows.

Following is an example of single record or tuple.

1 Adam 34 13000

RDBMS: What is an Attribute?
A table consists of several records(row), each record can be broken down into several
smaller parts of data known as Attributes. The above Employee table consist of four
attributes, ID, Name, Age and Salary.

Attribute Domain

When an attribute is defined in a relation(table), it is defined to hold only a certain type of
values, which is known as Attribute Domain.

Hence, the attribute Name will hold the name of employee for every tuple. If we save
employee's address there, it will be violation of the Relational database model.

Name

Adam

Alex

Stuart - 9/401, OC Street, Amsterdam

Ross

32

What is a Relation Schema?
A relation schema describes the structure of the relation, with the name of the relation(name
of table), its attributes and their names and type.

What is a Relation Key?
A relation key is an attribute which can uniquely identify a particular tuple(row) in a
relation(table).

Relational Integrity Constraints
Every relation in a relational database model should abide by or follow a few constraints to
be a valid relation, these constraints are called as Relational Integrity Constraints.

The three main Integrity Constraints are:

1. Key Constraints

2. Domain Constraints

3. Referential integrity Constraints

Key Constraints

We store data in tables, to later access it whenever required. In every table one or more
than one attributes together are used to fetch data from tables. The Key
Constraint specifies that there should be such an attribute(column) in a relation(table),
which can be used to fetch data for any tuple(row).

The Key attribute should never be NULL or same for two different row of data.

For example, in the Employee table we can use the attribute ID to fetch data for each of the
employee. No value of ID is null and it is unique for every row, hence it can be our Key
attribute.

Domain Constraint

33

Domain constraints refers to the rules defined for the values that can be stored for a certain
attribute.

Like we explained above, we cannot store Address of employee in the column for Name.

Similarly, a mobile number cannot exceed 10 digits.

Referential Integrity Constraint

We will study about this in detail later. For now remember this example, if I say Supriya is
my girlfriend, then a girl with name Supriya should also exist for that relationship to be
present.

If a table reference to some data from another table, then that table and that data should be
present for referential integrity constraint to hold true.

What is Relational Algebra?
Every database management system must define a query language to allow users to
access the data stored in the database. Relational Algebra is a procedural query language
used to query the database tables to access data in different ways.

In relational algebra, input is a relation(table from which data has to be accessed) and
output is also a relation(a temporary table holding the data asked for by the user).

Relational Algebra works on the whole table at once, so we do not have to use loops etc to
iterate over all the rows(tuples) of data one by one. All we have to do is specify the table
name from which we need the data, and in a single line of command, relational algebra will
traverse the entire given table to fetch data for you.

34

The primary operations that we can perform using relational algebra are:

1. Select

2. Project

3. Union

4. Set Different

5. Cartesian product

6. Rename

Select Operation (σ)
This is used to fetch rows(tuples) from table(relation) which satisfies a given condition.

Syntax: σp(r)

Where, σ represents the Select Predicate, r is the name of relation(table name in which you
want to look for data), and p is the prepositional logic, where we specify the conditions that
must be satisfied by the data. In prepositional logic, one can
use unary and binary operators like =, <, > etc, to specify the conditions.

Let's take an example of the Student table we specified above in the Introduction of
relational algebra, and fetch data for students with age more than 17.

σage > 17 (Student)

This will fetch the tuples(rows) from table Student, for which age will be greater than 17.

You can also use, and, or etc operators, to specify two conditions, for example,

σage > 17 and gender = 'Male' (Student)

This will return tuples(rows) from table Student with information of male students, of age
more than 17.(Consider the Student table has an attribute Gender too.)

Project Operation (∏)
Project operation is used to project only a certain set of attributes of a relation. In simple
words, If you want to see only the names all of the students in the Student table, then you
can use Project Operation.

It will only project or show the columns or attributes asked for, and will also remove
duplicate data from the columns.

35

Syntax: ∏A1, A2...(r)

where A1, A2 etc are attribute names(column names).

For example,

∏Name, Age(Student)

Above statement will show us only the Name and Age columns for all the rows of data
in Studenttable.

Union Operation (∪)
This operation is used to fetch data from two relations(tables) or temporary relation(result of
another operation).

For this operation to work, the relations(tables) specified should have same number of
attributes(columns) and same attribute domain. Also the duplicate tuples are autamatically
eliminated from the result.

Syntax: A ∪ B

where A and B are relations.

For example, if we have two tables RegularClass and ExtraClass, both have a
column student to save name of student, then,

∏Student(RegularClass) ∪ ∏Student(ExtraClass)

Above operation will give us name of Students who are attending both regular classes and
extra classes, eliminating repetition.

Set Difference (-)
This operation is used to find data present in one relation and not present in the second
relation. This operation is also applicable on two relations, just like Union operation.

Syntax: A - B

where A and B are relations.

For example, if we want to find name of students who attend the regular class but not the
extra class, then, we can use the below operation:

∏Student(RegularClass) - ∏Student(ExtraClass)

36

Cartesian Product (X)
This is used to combine data from two different relations(tables) into one and fetch data
from the combined relation.

Syntax: A X B

For example, if we want to find the information for Regular Class and Extra Class which are
conducted during morning, then, we can use the following operation:

σtime = 'morning' (RegularClass X ExtraClass)

For the above query to work, both RegularClass and ExtraClass should have the
attribute time.

Rename Operation (ρ)
This operation is used to rename the output relation for any query operation which returns
result like Select, Project etc. Or to simply rename a relation(table)

Syntax: ρ(RelationNew, RelationOld)

Apart from these common operations Relational Algebra is also used for Join operations
like,

 Natural Join

 Outer Join

 Theta join etc.

What is Relational Calculus?
Contrary to Relational Algebra which is a procedural query language to fetch data and which

also explains how it is done, Relational Calculus in non-procedural query language and has no

description about how the query will work or the data will b fetched. It only focusses on what to

do, and not on how to do it.

Relational Calculus exists in two forms:

1. Tuple Relational Calculus (TRC)

2. Domain Relational Calculus (DRC)

37

Tuple Relational Calculus (TRC)
In tuple relational calculus, we work on filtering tuples based on the given condition.

Syntax: { T | Condition }

In this form of relational calculus, we define a tuple variable, specify the table(relation) name in

which the tuple is to be searched for, along with a condition.

We can also specify column name using a . dot operator, with the tuple variable to only get a

certain attribute(column) in result.

A lot of informtion, right! Give it some time to sink in.

A tuple variable is nothing but a name, can be anything, generally we use a single alphabet for

this, so let's say T is a tuple variable.

To specify the name of the relation(table) in which we want to look for data, we do the

following:

Relation(T), where T is our tuple variable.

For example if our table is Student, we would put it as Student(T)

Then comes the condition part, to specify a condition applicable for a particluar

attribute(column), we can use the . dot variable with the tuple variable to specify it, like in

table Student, if we want to get data for students with age greater than 17, then, we can write it

as,

T.age > 17, where T is our tuple variable.

Putting it all together, if we want to use Tuple Relational Calculus to fetch names of students,

from table Student, with age greater than 17, then, for T being our tuple variable,

T.name | Student(T) AND T.age > 17

Domain Relational Calculus (DRC)
In domain relational calculus, filtering is done based on the domain of the attributes and not

based on the tuple values.

Syntax: { c1, c2, c3, ..., cn | F(c1, c2, c3, ... ,cn)}

where, c1, c2... etc represents domain of attributes(columns) and F defines the formula including

the condition for fetching the data.

For example,

38

{< name, age > | ∈ Student ∧ age > 17}

Again, the above query will return the names and ages of the students in the table Student who

are older than 17.

ER Model to Relational Model
As we all know that ER Model can be represented using ER Diagrams which is a great way
of designing and representing the database design in more of a flow chart form.

It is very convenient to design the database using the ER Model by creating an ER diagram
and later on converting it into relational model to design your tables.

Not all the ER Model constraints and components can be directly transformed into relational
model, but an approximate schema can be derived.

So let's take a few examples of ER diagrams and convert it into relational model schema,
hence creating tables in RDBMS.

Entity becomes Table
Entity in ER Model is changed into tables, or we can say for every Entity in ER model, a
table is created in Relational Model.

And the attributes of the Entity gets converted to columns of the table.

And the primary key specified for the entity in the ER model, will become the primary key for
the table in relational model.

For example, for the below ER Diagram in ER Model,

39

A table with name Student will be created in relational model, which will have 4
columns, id, name, age, address and id will be the primary key for this table.

Relationship becomes a Relationship

Table
In ER diagram, we use diamond/rhombus to reprsent a relationship between two entities. In
Relational model we create a relationship table for ER Model relationships too.

In the ER diagram below, we have two entities Teacher and Student with a relationship
between them.

40

As discussd above, entity gets mapped to table, hence we will create table for Teacher and
a table for Student with all the attributes converted into columns.

Now, an additional table will be created for the relationship, for example StudentTeacher or
give it any name you like. This table will hold the primary key for both Student and Teacher,
in a tuple to describe the relationship, which teacher teaches which student.

If there are additional attributes related to this relationship, then they become the columns
for this table, like subject name.

Also proper foriegn key constraints must be set for all the tables.

Points to Remember
Similarly we can generate relational database schema using the ER diagram. Following are
some key points to keep in mind while doing so:

1. Entity gets converted into Table, with all the attributes becoming fields(columns) in the

table.

2. Relationship between entities is also converted into table with primary keys of the

related entities also stored in it as foreign keys.

3. Primary Keys should be properly set.

4. For any relationship of Weak Entity, if primary key of any other entity is included in a

table, foriegn key constraint must be defined.

41

Introduction to Database Keys
Keys are very important part of Relational database model. They are used to establish and
identify relationships between tables and also to uniquely identify any record or row of data
inside a table.

A Key can be a single attribute or a group of attributes, where the combination may act as a
key.

Why we need a Key?
In real world applications, number of tables required for storing the data is huge, and the
different tables are related to each other as well.

Also, tables store a lot of data in them. Tables generally extends to thousands of records
stored in them, unsorted and unorganised.

Now to fetch any particular record from such dataset, you will have to apply some
conditions, but what if there is duplicate data present and every time you try to fetch some
data by applying certain condition, you get the wrong data. How many trials before you get
the right data?

To avoid all this, Keys are defined to easily identify any row of data in a table.

Let's try to understand about all the keys using a simple example.

student_id name Phone age

1 Akon 9876723452 17

2 Akon 9991165674 19

3 Bkon 7898756543 18

4 Ckon 8987867898 19

5 Dkon 9990080080 17

42

Let's take a simple Student table, with fields student_id, name, phone and age.

Super Key
Super Key is defined as a set of attributes within a table that can uniquely identify each
record within a table. Super Key is a superset of Candidate key.

In the table defined above super key would include student_id, (student_id,
name), phoneetc.

Confused? The first one is pretty simple as student_id is unique for every row of data,
hence it can be used to identity each row uniquely.

Next comes, (student_id, name), now name of two students can be same, but
their student_idcan't be same hence this combination can also be a key.

Similarly, phone number for every student will be unique, hence again, phone can also be a
key.

So they all are super keys.

Candidate Key
Candidate keys are defined as the minimal set of fields which can uniquely identify each
record in a table. It is an attribute or a set of attributes that can act as a Primary Key for a
table to uniquely identify each record in that table. There can be more than one candidate
key.

In our example, student_id and phone both are candidate keys for table Student.

 A candiate key can never be NULL or empty. And its value should be unique.

 There can be more than one candidate keys for a table.

 A candidate key can be a combination of more than one columns(attributes).

Primary Key
Primary key is a candidate key that is most appropriate to become the main key for any
table. It is a key that can uniquely identify each record in a table.

43

For the table Student we can make the student_id column as the primary key.

Composite Key
Key that consists of two or more attributes that uniquely identify any record in a table is
called Composite key. But the attributes which together form the Composite key are not a
key independentely or individually.

44

In the above picture we have a Score table which stores the marks scored by a student in a

particular subject.

In this table student_id and subject_id together will form the primary key, hence it is a
composite key.

Secondary or Alternative key
The candidate key which are not selected as primary key are known as secondary keys or
alternative keys.

Non-key Attributes
Non-key attributes are the attributes or fields of a table, other than candidate
key attributes/fields in a table.

Non-prime Attributes
Non-prime Attributes are attributes other than Primary Key attribute(s)..

45

Normalization of Database
Database Normalization is a technique of organizing the data in the database.
Normalization is a systematic approach of decomposing tables to eliminate data
redundancy(repetition) and undesirable characteristics like Insertion, Update and Deletion
Anamolies. It is a multi-step process that puts data into tabular form, removing duplicated
data from the relation tables.

Normalization is used for mainly two purposes,

 Eliminating reduntant(useless) data.

 Ensuring data dependencies make sense i.e data is logically stored.

The video below will give you a good overview of Database Normalization. If you want you
can skip the video, as the concept is covered in detail, below the video.

Problems Without Normalization
If a table is not properly normalized and have data redundancy then it will not only eat up
extra memory space but will also make it difficult to handle and update the database,
without facing data loss. Insertion, Updation and Deletion Anamolies are very frequent if
database is not normalized. To understand these anomalies let us take an example of
a Student table.

rollno name Branch Hod office_tel

401 Akon CSE Mr. X 53337

402 Bkon CSE Mr. X 53337

403 Ckon CSE Mr. X 53337

404 Dkon CSE Mr. X 53337

In the table above, we have data of 4 Computer Sci. students. As we can see, data for the
fields branch, hod(Head of Department) and office_tel is repeated for the students who
are in the same branch in the college, this is Data Redundancy.

46

Insertion Anomaly

Suppose for a new admission, until and unless a student opts for a branch, data of the
student cannot be inserted, or else we will have to set the branch information as NULL.

Also, if we have to insert data of 100 students of same branch, then the branch information
will be repeated for all those 100 students.

These scenarios are nothing but Insertion anomalies.

Updation Anomaly

What if Mr. X leaves the college? or is no longer the HOD of computer science department?
In that case all the student records will have to be updated, and if by mistake we miss any
record, it will lead to data inconsistency. This is Updation anomaly.

Deletion Anomaly

In our Student table, two different informations are kept together, Student information and

Branch information. Hence, at the end of the academic year, if student records are deleted,
we will also lose the branch information. This is Deletion anomaly.

Normalization Rule
Normalization rules are divided into the following normal forms:

1. First Normal Form

2. Second Normal Form

3. Third Normal Form

4. BCNF

5. Fourth Normal Form

47

First Normal Form (1NF)
For a table to be in the First Normal Form, it should follow the following 4 rules:

1. It should only have single(atomic) valued attributes/columns.

2. Values stored in a column should be of the same domain

3. All the columns in a table should have unique names.

4. And the order in which data is stored, does not matter.

In the next tutorial, we will discuss about the First Normal Form in details.

Second Normal Form (2NF)
For a table to be in the Second Normal Form,

1. It should be in the First Normal form.

2. And, it should not have Partial Dependency.

To understand what is Partial Dependency and how to normalize a table to 2nd normal for,
jump to the Second Normal Form tutorial.

Third Normal Form (3NF)
A table is said to be in the Third Normal Form when,

1. It is in the Second Normal form.

2. And, it doesn't have Transitive Dependency.

Here is the Third Normal Form tutorial. But we suggest you to first study about the second
normal form and then head over to the third normal form.

Boyce and Codd Normal Form (BCNF)

https://www.studytonight.com/dbms/first-normal-form.php
https://www.studytonight.com/dbms/second-normal-form.php
https://www.studytonight.com/dbms/third-normal-form.php

48

Boyce and Codd Normal Form is a higher version of the Third Normal form. This form
deals with certain type of anomaly that is not handled by 3NF. A 3NF table which does not
have multiple overlapping candidate keys is said to be in BCNF. For a table to be in BCNF,
following conditions must be satisfied:

 R must be in 3rd Normal Form

 and, for each functional dependency (X → Y), X should be a super Key.

To learn about BCNF in detail with a very easy to understand example, head to Boye-Codd
Normal Form tutorial.

Fourth Normal Form (4NF)
A table is said to be in the Fourth Normal Form when,

1. It is in the Boyce-Codd Normal Form.

2. And, it doesn't have Multi-Valued Dependency.

Here is the Fourth Normal Form tutorial. But we suggest you to understand other normal
forms before you head over to the fourth normal form.

What is First Normal Form
(1NF)?

In our last tutorial we learned and understood how data redundancy or repetition can lead to
several issues like Insertion, Deletion and Updation anomalies and how Normalization can
reduce data redundancy and make the data more meaningful.

In this tutorial we will learn about the 1st Normal Form which is more like the Step 1 of the
Normalization process. The 1st Normal form expects you to design your table in such a way
that it can easily be extended and it is easier for you to retrieve data from it whenever
required.

If tables in a database are not even in the 1st Normal Form, it is considered as bad
database design.

https://www.studytonight.com/dbms/boyce-codd-normal-form.php
https://www.studytonight.com/dbms/boyce-codd-normal-form.php
https://www.studytonight.com/dbms/fourth-normal-form.php

49

Rules for First Normal Form
The first normal form expects you to follow a few simple rules while designing your
database, and they are:

Rule 1: Single Valued Attributes

Each column of your table should be single valued which means they should not contain
multiple values. We will explain this with help of an example later, let's see the other rules
for now.

Rule 2: Attribute Domain should not change

This is more of a "Common Sense" rule. In each column the values stored must be of the
same kind or type.

For example: If you have a column dob to save date of births of a set of people, then you
cannot or you must not save 'names' of some of them in that column along with 'date of
birth' of others in that column. It should hold only 'date of birth' for all the records/rows.

Rule 3: Unique name for Attributes/Columns

This rule expects that each column in a table should have a unique name. This is to avoid
confusion at the time of retrieving data or performing any other operation on the stored data.

If one or more columns have same name, then the DBMS system will be left confused.

Rule 4: Order doesn't matters

This rule says that the order in which you store the data in your table doesn't matter.

Time for an Example
Although all the rules are self explanatory still let's take an example where we will create a
table to store student data which will have student's roll no., their name and the name of
subjects they have opted for.

Here is our table, with some sample data added to it.

50

roll_no name Subject

101 Akon OS, CN

103 Ckon Java

102 Bkon C, C++

Our table already satisfies 3 rules out of the 4 rules, as all our column names are unique,
we have stored data in the order we wanted to and we have not inter-mixed different type of
data in columns.

But out of the 3 different students in our table, 2 have opted for more than 1 subject. And we
have stored the subject names in a single column. But as per the 1st Normal form each
column must contain atomic value.

How to solve this Problem?
It's very simple, because all we have to do is break the values into atomic values.

Here is our updated table and it now satisfies the First Normal Form.

roll_no name Subject

101 Akon OS

101 Akon CN

103 Ckon Java

102 Bkon C

51

102 Bkon C++

By doing so, although a few values are getting repeated but values for the subject column
are now atomic for each record/row.

Using the First Normal Form, data redundancy increases, as there will be many columns
with same data in multiple rows but each row as a whole will be unique.

What is Second Normal Form?
If you want you can skip the video, as the concept is covered in detail below the video.

For a table to be in the Second Normal Form, it must satisfy two conditions:

1. The table should be in the First Normal Form.

2. There should be no Partial Dependency.

What is Partial Dependency? Do not worry about it. First let's understand what
is Dependency in a table?

What is Dependency?
Let's take an example of a Student table with
columns student_id, name, reg_no(registration number), branch and address(student's
home address).

student_id name reg_no Branch address

In this table, student_id is the primary key and will be unique for every row, hence we can
use student_id to fetch any row of data from this table

Even for a case, where student names are same, if we know the student_id we can easily
fetch the correct record.

52

student_id name reg_no Branch address

10 Akon 07-WY CSE Kerala

11 Akon 08-WY IT Gujarat

Hence we can say a Primary Key for a table is the column or a group of
columns(composite key) which can uniquely identify each record in the table.

I can ask from branch name of student with student_id 10, and I can get it. Similarly, if I
ask for name of student with student_id 10 or 11, I will get it. So all I need
is student_id and every other column depends on it, or can be fetched using it.

This is Dependency and we also call it Functional Dependency.

What is Partial Dependency?
Now that we know what dependency is, we are in a better state to understand what partial
dependency is.

For a simple table like Student, a single column like student_id can uniquely identfy all the
records in a table.

But this is not true all the time. So now let's extend our example to see if more than 1
column together can act as a primary key.

Let's create another table for Subject, which will have subject_id and subject_name fields
and subject_id will be the primary key.

subject_id subject_name

1 Java

2 C++

3 Php

53

Now we have a Student table with student information and another table Subject for
storing subject information.

Let's create another table Score, to store the marks obtained by students in the respective
subjects. We will also be saving name of the teacher who teaches that subject along with
marks.

score_id student_id subject_id Marks teacher

1 10 1 70 Java Teacher

2 10 2 75 C++ Teacher

3 11 1 80 Java Teacher

In the score table we are saving the student_id to know which student's marks are these
and subject_id to know for which subject the marks are for.

Together, student_id + subject_id forms a Candidate Key(learn about Database Keys)
for this table, which can be the Primary key.

Confused, How this combination can be a primary key?

See, if I ask you to get me marks of student with student_id 10, can you get it from this
table? No, because you don't know for which subject. And if I give you subject_id, you
would not know for which student. Hence we need student_id + subject_id to uniquely
identify any row.

But where is Partial Dependency?
Now if you look at the Score table, we have a column names teacher which is only
dependent on the subject, for Java it's Java Teacher and for C++ it's C++ Teacher & so on.

Now as we just discussed that the primary key for this table is a composition of two columns
which is student_id & subject_id but the teacher's name only depends on subject, hence
the subject_id, and has nothing to do with student_id.

This is Partial Dependency, where an attribute in a table depends on only a part of the

primary key and not on the whole key.

How to remove Partial Dependency?

https://www.studytonight.com/dbms/database-key.php

54

There can be many different solutions for this, but out objective is to remove teacher's name
from Score table.

The simplest solution is to remove columns teacher from Score table and add it to the
Subject table. Hence, the Subject table will become:

subject_id subject_name teacher

1 Java Java Teacher

2 C++ C++ Teacher

3 Php Php Teacher

And our Score table is now in the second normal form, with no partial dependency.

score_id student_id subject_id marks

1 10 1 70

2 10 2 75

3 11 1 80

Quick Recap

1. For a table to be in the Second Normal form, it should be in the First Normal form and it

should not have Partial Dependency.

2. Partial Dependency exists, when for a composite primary key, any attribute in the table

depends only on a part of the primary key and not on the complete primary key.

55

3. To remove Partial dependency, we can divide the table, remove the attribute which is

causing partial dependency, and move it to some other table where it fits in well.

Third Normal Form (3NF)
In our last tutorial, we learned about the second normal form and even normalized
our Score table into the 2nd Normal Form.

So let's use the same example, where we have 3 tables, Student, Subject and Score.

Student Table

student_id name reg_no Branch address

10 Akon 07-WY CSE Kerala

11 Akon 08-WY IT Gujarat

12 Bkon 09-WY IT Rajasthan

Subject Table

subject_id subject_name teacher

1 Java Java Teacher

2 C++ C++ Teacher

3 Php Php Teacher

Score Table

56

score_id student_id subject_id marks

1 10 1 70

2 10 2 75

3 11 1 80

In the Score table, we need to store some more information, which is the exam name and
total marks, so let's add 2 more columns to the Score table.

score_id student_id subject_id marks exam_name total_marks

Requirements for Third Normal Form
For a table to be in the third normal form,

1. It should be in the Second Normal form.

2. And it should not have Transitive Dependency.

What is Transitive Dependency?
With exam_name and total_marks added to our Score table, it saves more data now. Primary
key for our Score table is a composite key, which means it's made up of two attributes or
columns → student_id + subject_id.

Our new column exam_name depends on both student and subject. For example, a
mechanical engineering student will have Workshop exam but a computer science student
won't. And for some subjects you have Prctical exams and for some you don't. So we can
say that exam_name is dependent on both student_id and subject_id.

57

And what about our second new column total_marks? Does it depend on our Score table's
primary key?

Well, the column total_marks depends on exam_name as with exam type the total score
changes. For example, practicals are of less marks while theory exams are of more marks.

But, exam_name is just another column in the score table. It is not a primary key or even a
part of the primary key, and total_marks depends on it.

This is Transitive Dependency. When a non-prime attribute depends on other non-prime
attributes rather than depending upon the prime attributes or primary key.

How to remove Transitive Dependency?
Again the solution is very simple. Take out the columns exam_name and total_marks from
Score table and put them in an Exam table and use the exam_id wherever required.

Score Table: In 3rd Normal Form

score_id student_id subject_id marks exam_id

The new Exam table

exam_id exam_name total_marks

1 Workshop 200

2 Mains 70

3 Practicals 30

Advantage of removing Transitive Dependency

58

The advantage of removing transitive dependency is,

 Amount of data duplication is reduced.

 Data integrity achieved.

Boyce-Codd Normal Form
(BCNF)
Boyce-Codd Normal Form or BCNF is an extension to the third normal form, and is also
known as 3.5 Normal Form.

Follow the video above for complete explanation of BCNF. Or, if you want, you can even
skip the video and jump to the section below for the complete tutorial.

In our last tutorial, we learned about the third normal form and we also learned how to
remove transitive dependency from a table, we suggest you to follow the last tutorial

before this one.

Rules for BCNF
For a table to satisfy the Boyce-Codd Normal Form, it should satisfy the following two
conditions:

1. It should be in the Third Normal Form.

2. And, for any dependency A → B, A should be a super key.

The second point sounds a bit tricky, right? In simple words, it means, that for a
dependency A → B, A cannot be a non-prime attribute, if B is a prime attribute.

Time for an Example
Below we have a college enrolment table with columns student_id, subject and professor.

student_id subject professor

https://www.studytonight.com/dbms/third-normal-form.php

59

101 Java P.Java

101 C++ P.Cpp

102 Java P.Java2

103 C# P.Chash

104 Java P.Java

As you can see, we have also added some sample data to the table.

In the table above:

 One student can enrol for multiple subjects. For example, student with student_id 101,

has opted for subjects - Java & C++

 For each subject, a professor is assigned to the student.

 And, there can be multiple professors teaching one subject like we have for Java.

What do you think should be the Primary Key?

Well, in the table above student_id, subject together form the primary key, because
using student_id and subject, we can find all the columns of the table.

One more important point to note here is, one professor teaches only one subject, but one
subject may have two different professors.

Hence, there is a dependency between subject and professor here,
where subject depends on the professor name.

This table satisfies the 1st Normal form because all the values are atomic, column names
are unique and all the values stored in a particular column are of same domain.

This table also satisfies the 2nd Normal Form as their is no Partial Dependency.

And, there is no Transitive Dependency, hence the table also satisfies the 3rd Normal
Form.

But this table is not in Boyce-Codd Normal Form.

60

Why this table is not in BCNF?
In the table above, student_id, subject form primary key, which means subject column is
a prime attribute.

But, there is one more dependency, professor → subject.

And while subject is a prime attribute, professor is a non-prime attribute, which is not
allowed by BCNF.

How to satisfy BCNF?
To make this relation(table) satisfy BCNF, we will decompose this table into two
tables, student table and professor table.

Below we have the structure for both the tables.

Student Table

student_id p_id

101 1

101 2

and so on...

And, Professor Table

p_id professor subject

1 P.Java Java

2 P.Cpp C++

61

and so on...

And now, this relation satisfy Boyce-Codd Normal Form. In the next tutorial we will learn
about the Fourth Normal Form.

A more Generic Explanation
In the picture below, we have tried to explain BCNF in terms of relations.

Fourth Normal Form (4NF)
Fourth Normal Form comes into picture when Multi-valued Dependency occur in any
relation. In this tutorial we will learn about Multi-valued Dependency, how to remove it and
how to make any table satisfy the fourth normal form.

Follow the video above for complete explanation of 4th Normal Form. Or, if you want, you
can even skip the video and jump to the section below for the complete tutorial.

In our last tutorial, we learned about the boyce-codd normal form, we suggest you to

follow the last tutorial before this one.

https://www.studytonight.com/dbms/boyce-codd-normal-form.php

62

Rules for 4th Normal Form
For a table to satisfy the Fourth Normal Form, it should satisfy the following two conditions:

1. It should be in the Boyce-Codd Normal Form.

2. And, the table should not have any Multi-valued Dependency.

Let's try to understand what multi-valued dependency is in the next section.

What is Multi-valued Dependency?
A table is said to have multi-valued dependency, if the following conditions are true,

1. For a dependency A → B, if for a single value of A, multiple value of B exists, then the

table may have multi-valued dependency.

2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency.

3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B,

then B and C should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued
dependency.

Time for an Example
Below we have a college enrolment table with columns s_id, course and hobby.

s_id course hobby

1 Science Cricket

63

1 Maths Hockey

2 C# Cricket

2 Php Hockey

As you can see in the table above, student with s_id 1 has opted for two
courses, Science and Maths, and has two hobbies, Cricket and Hockey.

You must be thinking what problem this can lead to, right?

Well the two records for student with s_id 1, will give rise to two more records, as shown
below, because for one student, two hobbies exists, hence along with both the courses,
these hobbies should be specified.

s_id course hobby

1 Science Cricket

1 Maths Hockey

1 Science Hockey

1 Maths Cricket

And, in the table above, there is no relationship between the columns course and hobby.
They are independent of each other.

So there is multi-value dependency, which leads to un-necessary repetition of data and
other anomalies as well.

How to satisfy 4th Normal Form?
To make the above relation satify the 4th normal form, we can decompose the table into 2
tables.

64

CourseOpted Table

s_id course

1 Science

1 Maths

2 C#

2 Php

And, Hobbies Table,

s_id hobby

1 Cricket

1 Hockey

2 Cricket

2 Hockey

Now this relation satisfies the fourth normal form.

A table can also have functional dependency along with multi-valued dependency. In that
case, the functionally dependent columns are moved in a separate table and the multi-
valued dependent columns are moved to separate tables.

If you design your database carefully, you can easily avoid these issues.

Introduction to SQL

65

Structure Query Language(SQL) is a database query language used for storing and
managing data in Relational DBMS. SQL was the first commercial language introduced for
E.F Codd's Relational model of database. Today almost all RDBMS(MySql, Oracle,
Infomix, Sybase, MS Access) use SQL as the standard database query language. SQL is
used to perform all types of data operations in RDBMS.

SQL Command
SQL defines following ways to manipulate data stored in an RDBMS.

DDL: Data Definition Language

This includes changes to the structure of the table like creation of table, altering table,
deleting a table etc.

All DDL commands are auto-committed. That means it saves all the changes permanently
in the database.

Command Description

create to create new table or database

alter for alteration

truncate delete data from table

drop to drop a table

rename to rename a table

DML: Data Manipulation Language

66

DML commands are used for manipulating the data stored in the table and not the table
itself.

DML commands are not auto-committed. It means changes are not permanent to database,
they can be rolled back.

Command Description

insert to insert a new row

update to update existing row

delete to delete a row

merge merging two rows or two tables

TCL: Transaction Control Language

These commands are to keep a check on other commands and their affect on the database.
These commands can annul changes made by other commands by rolling the data back to
its original state. It can also make any temporary change permanent.

Command Description

commit to permanently save

rollback to undo change

savepoint to save temporarily

67

DCL: Data Control Language

Data control language are the commands to grant and take back authority from any
database user.

Command Description

grant grant permission of right

revoke take back permission.

DQL: Data Query Language

Data query language is used to fetch data from tables based on conditions that we can
easily apply.

Command Description

select retrieve records from one or more table

SQL: create command
create is a DDL SQL command used to create a table or a database in relational database
management system.

Creating a Database
To create a database in RDBMS, create command is used. Following is the syntax,

CREATE DATABASE <DB_NAME>;

Example for creating Database

68

CREATE DATABASE Test;

The above command will create a database named Test, which will be an empty schema
without any table.

To create tables in this newly created database, we can again use the create command.

Creating a Table
create command can also be used to create tables. Now when we create a table, we have
to specify the details of the columns of the tables too. We can specify
the names and datatypes of various columns in the create command itself.

Following is the syntax,

CREATE TABLE <TABLE_NAME>

(

 column_name1 datatype1,

 column_name2 datatype2,

 column_name3 datatype3,

 column_name4 datatype4

);

create table command will tell the database system to create a new table with the given
table name and column information.

Example for creating Table
CREATE TABLE Student(

 student_id INT,

 name VARCHAR(100),

 age INT);

The above command will create a new table with name Student in the current database
with 3 columns, namely student_id, name and age. Where the column student_id will only
store integer, name will hold upto 100 characters and age will again store only integer value.

If you are currently not logged into your database in which you want to create the table then
you can also add the database name along with table name, using a dot operator .

For example, if we have a database with name Test and we want to create a
table Student in it, then we can do so using the following query:

CREATE TABLE Test.Student(

69

 student_id INT,

 name VARCHAR(100),

 age INT);

Most commonly used datatypes for Table columns
Here we have listed some of the most commonly used datatypes used for columns in
tables.

Datatype Use

INT used for columns which will store integer values.

FLOAT used for columns which will store float values.

DOUBLE used for columns which will store float values.

VARCHAR used for columns which will be used to store characters and integers, basically a

string.

CHAR used for columns which will store char values(single character).

DATE used for columns which will store date values.

TEXT used for columns which will store text which is generally long in length. For example,

if you create a table for storing profile information of a social networking website,

then for about me section you can have a column of type TEXT.

SQL: ALTER command
alter command is used for altering the table structure, such as,

70

 to add a column to existing table

 to rename any existing column

 to change datatype of any column or to modify its size.

 to drop a column from the table.

ALTER Command: Add a new Column
Using ALTER command we can add a column to any existing table. Following is the syntax,

ALTER TABLE table_name ADD(

 column_name datatype);

Here is an Example for this,

ALTER TABLE student ADD(

 address VARCHAR(200)

);

The above command will add a new column address to the table student, which will hold
data of type varchar which is nothing but string, of length 200.

ALTER Command: Add multiple new

Columns
Using ALTER command we can even add multiple new columns to any existing table.
Following is the syntax,

ALTER TABLE table_name ADD(

 column_name1 datatype1,

 column-name2 datatype2,

 column-name3 datatype3);

Here is an Example for this,

ALTER TABLE student ADD(

 father_name VARCHAR(60),

 mother_name VARCHAR(60),

 dob DATE);

The above command will add three new columns to the student table

71

ALTER Command: Add Column with

default value
ALTER command can add a new column to an existing table with a default value too. The
default value is used when no value is inserted in the column. Following is the syntax,

ALTER TABLE table_name ADD(

 column-name1 datatype1 DEFAULT some_value

);

Here is an Example for this,

ALTER TABLE student ADD(

 dob DATE DEFAULT '01-Jan-99'

);

The above command will add a new column with a preset default value to the
table student.

ALTER Command: Modify an existing

Column
ALTER command can also be used to modify data type of any existing column. Following is
the syntax,

ALTER TABLE table_name modify(

 column_name datatype

);

Here is an Example for this,

ALTER TABLE student MODIFY(

 address varchar(300));

Remember we added a new column address in the beginning? The above command will
modify the address column of the student table, to now hold upto 300 characters.

ALTER Command: Rename a Column

72

Using ALTER command you can rename an existing column. Following is the syntax,

ALTER TABLE table_name RENAME

 old_column_name TO new_column_name;

Here is an example for this,

ALTER TABLE student RENAME

 address TO location;

The above command will rename address column to location.

ALTER Command: Drop a Column
ALTER command can also be used to drop or remove columns. Following is the syntax,

ALTER TABLE table_name DROP(

 column_name);

Here is an example for this,

ALTER TABLE student DROP(

 address);

The above command will drop the address column from the table student.

Truncate, Drop or Rename a
Table
In this tutorial we will learn about the various DDL commands which are used to re-define
the tables.

TRUNCATE command
TRUNCATE command removes all the records from a table. But this command will not destroy
the table's structure. When we use TRUNCATE command on a table its (auto-increment)
primary key is also initialized. Following is its syntax,

TRUNCATE TABLE table_name

Here is an example explaining it,

TRUNCATE TABLE student;

The above query will delete all the records from the table student.

In DML commands, we will study about the DELETE command which is also more or less
same as the TRUNCATE command. We will also learn about the difference between the two in
that tutorial.

73

DROP command
DROP command completely removes a table from the database. This command will also
destroy the table structure and the data stored in it. Following is its syntax,

DROP TABLE table_name

Here is an example explaining it,

DROP TABLE student;

The above query will delete the Student table completely. It can also be used on

Databases, to delete the complete database. For example, to drop a database,

DROP DATABASE Test;

The above query will drop the database with name Test from the system.

RENAME query
RENAME command is used to set a new name for any existing table. Following is the syntax,

RENAME TABLE old_table_name to new_table_name

Here is an example explaining it.

RENAME TABLE student to students_info;

The above query will rename the table student to students_info.

Using INSERT SQL command
Data Manipulation Language (DML) statements are used for managing data in database.
DML commands are not auto-committed. It means changes made by DML command are
not permanent to database, it can be rolled back.

Talking about the Insert command, whenever we post a Tweet on Twitter, the text is stored
in some table, and as we post a new tweet, a new record gets inserted in that table.

INSERT command
Insert command is used to insert data into a table. Following is its general syntax,

INSERT INTO table_name VALUES(data1, data2, ...)

Lets see an example,

74

Consider a table student with the following fields.

s_id name age

INSERT INTO student VALUES(101, 'Adam', 15);

The above command will insert a new record into student table.

s_id name age

101 Adam 15

Insert value into only specific columns
We can use the INSERT command to insert values for only some specific columns of a row.
We can specify the column names along with the values to be inserted like this,

INSERT INTO student(id, name) values(102, 'Alex');

The above SQL query will only insert id and name values in the newly inserted record.

Insert NULL value to a column
Both the statements below will insert NULL value into age column of the student table.

INSERT INTO student(id, name) values(102, 'Alex');

Or,

INSERT INTO Student VALUES(102,'Alex', null);

The above command will insert only two column values and the other column is set to null.

S_id S_Name age

101 Adam 15

75

102 Alex

Insert Default value to a column
INSERT INTO Student VALUES(103,'Chris', default)

S_id S_Name age

101 Adam 15

102 Alex

103 chris 14

Suppose the column age in our tabel has a default value of 14.

Also, if you run the below query, it will insert default value into the age column, whatever the
default value may be.

INSERT INTO Student VALUES(103,'Chris')

Using UPDATE SQL command
Let's take an example of a real-world problem. These days, Facebook provides an option
for Editingyour status update, how do you think it works? Yes, using the Update SQL
command.

Let's learn about the syntax and usage of the UPDATE command.

UPDATE command
UPDATE command is used to update any record of data in a table. Following is its general
syntax,

UPDATE table_name SET column_name = new_value WHERE some_condition;

WHERE is used to add a condition to any SQL query, we will soon study about it in detail.

76

Lets take a sample table student,

student_id name age

101 Adam 15

102 Alex

103 chris 14

UPDATE student SET age=18 WHERE student_id=102;

S_id S_Name age

101 Adam 15

102 Alex 18

103 chris 14

In the above statement, if we do not use the WHERE clause, then our update query will
update age for all the columns of the table to 18.

Updating Multiple Columns
We can also update values of multiple columns using a single UPDATE statement.

UPDATE student SET name='Abhi', age=17 where s_id=103;

The above command will update two columns of the record which has s_id 103.

77

s_id name age

101 Adam 15

102 Alex 18

103 Abhi 17

UPDATE Command: Incrementing Integer Value
When we have to update any integer value in a table, then we can fetch and update the
value in the table in a single statement.

For example, if we have to update the age column of student table every year for every
student, then we can simply run the following UPDATE statement to perform the following
operation:

UPDATE student SET age = age+1;

As you can see, we have used age = age + 1 to increment the value of age by 1.

NOTE: This style only works for integer values.

Using DELETE SQL command
When you ask any question in Studytonight's Forum it gets saved into a table. And using
the Deleteoption, you can even delete a question asked by you. How do you think that
works? Yes, using the Delete DML command.

Let's study about the syntax and the usage of the Delete command.

DELETE command
DELETE command is used to delete data from a table.

Following is its general syntax,

DELETE FROM table_name;

https://www.studytonight.com/studyroom/

78

Let's take a sample table student:

s_id name age

101 Adam 15

102 Alex 18

103 Abhi 17

Delete all Records from a Table
DELETE FROM student;

The above command will delete all the records from the table student.

Delete a particular Record from a Table
In our student table if we want to delete a single record, we can use the WHERE clause to
provide a condition in our DELETE statement.

DELETE FROM student WHERE s_id=103;

The above command will delete the record where s_id is 103 from the table student.

S_id S_Name age

101 Adam 15

102 Alex 18

79

Isn't DELETE same as TRUNCATE
TRUNCATE command is different from DELETE command. The delete command will delete all
the rows from a table whereas truncate command not only deletes all the records stored in
the table, but it also re-initializes the table(like a newly created table).

For eg: If you have a table with 10 rows and an auto_increment primary key, and if you
use DELETEcommand to delete all the rows, it will delete all the rows, but will not re-initialize
the primary key, hence if you will insert any row after using the DELETE command, the
auto_increment primary key will start from 11. But in case of TRUNCATE command, primary
key is re-initialized, and it will again start from 1.

Commit, Rollback and Savepoint
SQL commands
Transaction Control Language(TCL) commands are used to manage transactions in the
database. These are used to manage the changes made to the data in a table by DML
statements. It also allows statements to be grouped together into logical transactions.

COMMIT command
COMMIT command is used to permanently save any transaction into the database.

When we use any DML command like INSERT, UPDATE or DELETE, the changes made by
these commands are not permanent, until the current session is closed, the changes made
by these commands can be rolled back.

To avoid that, we use the COMMIT command to mark the changes as permanent.

Following is commit command's syntax,

COMMIT;

ROLLBACK command
This command restores the database to last commited state. It is also used
with SAVEPOINT command to jump to a savepoint in an ongoing transaction.

If we have used the UPDATE command to make some changes into the database, and realise
that those changes were not required, then we can use the ROLLBACK command to rollback
those changes, if they were not commited using the COMMIT command.

Following is rollback command's syntax,

80

ROLLBACK TO savepoint_name;

SAVEPOINT command
SAVEPOINT command is used to temporarily save a transaction so that you can rollback to
that point whenever required.

Following is savepoint command's syntax,

SAVEPOINT savepoint_name;

In short, using this command we can name the different states of our data in any table and
then rollback to that state using the ROLLBACK command whenever required.

Using Savepoint and Rollback
Following is the table class,

id name

1 Abhi

2 Adam

4 Alex

Lets use some SQL queries on the above table and see the results.

INSERT INTO class VALUES(5, 'Rahul');

COMMIT;

UPDATE class SET name = 'Abhijit' WHERE id = '5';

SAVEPOINT A;

INSERT INTO class VALUES(6, 'Chris');

81

SAVEPOINT B;

INSERT INTO class VALUES(7, 'Bravo');

SAVEPOINT C;

SELECT * FROM class;

NOTE: SELECT statement is used to show the data stored in the table.

The resultant table will look like,

id name

1 Abhi

2 Adam

4 Alex

5 Abhijit

6 Chris

7 Bravo

Now let's use the ROLLBACK command to roll back the state of data to the savepoint B.

ROLLBACK TO B;

SELECT * FROM class;

Now our class table will look like,

id name

82

1 Abhi

2 Adam

4 Alex

5 Abhijit

6 Chris

Now let's again use the ROLLBACK command to roll back the state of data to the savepoint A

ROLLBACK TO A;

SELECT * FROM class;

Now the table will look like,

id name

1 Abhi

2 Adam

4 Alex

5 Abhijit

So now you know how the commands COMMIT, ROLLBACK and SAVEPOINT works.

Using GRANT and REVOKE

83

Data Control Language(DCL) is used to control privileges in Database. To perform any
operation in the database, such as for creating tables, sequences or views, a user needs
privileges. Privileges are of two types,

 System: This includes permissions for creating session, table, etc and all types of other

system privileges.

 Object: This includes permissions for any command or query to perform any operation

on the database tables.

In DCL we have two commands,

 GRANT: Used to provide any user access privileges or other priviliges for the database.

 REVOKE: Used to take back permissions from any user.

Allow a User to create session
When we create a user in SQL, it is not even allowed to login and create a session until and
unless proper permissions/priviliges are granted to the user.

Following command can be used to grant the session creating priviliges.

GRANT CREATE SESSION TO username;

Allow a User to create table
To allow a user to create tables in the database, we can use the below command,

GRANT CREATE TABLE TO username;

Provide user with space on tablespace to store

table
Allowing a user to create table is not enough to start storing data in that table. We also must
provide the user with priviliges to use the available tablespace for their table and data.

ALTER USER username QUOTA UNLIMITED ON SYSTEM;

84

The above command will alter the user details and will provide it access to unlimited
tablespace on system.

NOTE: Generally unlimited quota is provided to Admin users.

Grant all privilege to a User
sysdba is a set of priviliges which has all the permissions in it. So if we want to provide all
the privileges to any user, we can simply grant them the sysdba permission.

GRANT sysdba TO username

Grant permission to create any table
Sometimes user is restricted from creating come tables with names which are reserved for
system tables. But we can grant privileges to a user to create any table using the below
command,

GRANT CREATE ANY TABLE TO username

Grant permission to drop any table
As the title suggests, if you want to allow user to drop any table from the database, then
grant this privilege to the user,

GRANT DROP ANY TABLE TO username

To take back Permissions
And, if you want to take back the privileges from any user, use the REVOKE command.

REVOKE CREATE TABLE FROM username

Using the WHERE SQL clause
WHERE clause is used to specify/apply any condition while retrieving, updating or deleting
data from a table. This clause is used mostly with SELECT, UPDATE and DELETEquery.

85

When we specify a condition using the WHERE clause then the query executes only for those
records for which the condition specified by the WHERE clause is true.

Syntax for WHERE clause
Here is how you can use the WHERE clause with a DELETE statement, or any other statement,

DELETE FROM table_name WHERE [condition];

The WHERE clause is used at the end of any SQL query, to specify a condition for execution.

Time for an Example
Consider a table student,

s_id name age address

101 Adam 15 Chennai

102 Alex 18 Delhi

103 Abhi 17 Banglore

104 Ankit 22 Mumbai

Now we will use the SELECT statement to display data of the table, based on a condition,
which we will add to our SELECT query using WHERE clause.

Let's write a simple SQL query to display the record for student with s_id as 101.

SELECT s_id,

 name,

 age,

 address

 FROM student WHERE s_id = 101;

Following will be the result of the above query.

86

s_id name age address

101 Adam 15 Noida

Applying condition on Text Fields

In the above example we have applied a condition to an integer value field, but what if we
want to apply the condition on name field. In that case we must enclose the value in single
quote ' '. Some databases even accept double quotes, but single quotes is accepted by
all.

SELECT s_id,

 name,

 age,

 address

 FROM student WHERE name = 'Adam';

Following will be the result of the above query.

s_id name age address

101 Adam 15 Noida

Operators for WHERE clause condition
Following is a list of operators that can be used while specifying the WHERE clause condition.

Operator Description

= Equal to

87

!= Not Equal to

< Less than

> Greater than

<= Less than or Equal to

>= Greate than or Equal to

BETWEEN Between a specified range of values

LIKE This is used to search for a pattern in value.

IN In a given set of values

SQL LIKE clause
LIKE clause is used in the condition in SQL query with the WHERE clause. LIKE clause
compares data with an expression using wildcard operators to match pattern given in the
condition.

Wildcard operators
There are two wildcard operators that are used in LIKE clause.

 Percent sign %: represents zero, one or more than one character.

 Underscore sign _: represents only a single character.

88

Example of LIKE clause
Consider the following Student table.

s_id s_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

SELECT * FROM Student WHERE s_name LIKE 'A%';

The above query will return all records where s_name starts with character 'A'.

s_id s_Name age

101 Adam 15

102 Alex 18

103 Abhi 17

Using _ and %
SELECT * FROM Student WHERE s_name LIKE '_d%';

The above query will return all records from Student table where s_name contain 'd' as
second character.

s_id s_Name age

89

101 Adam 15

Using % only
SELECT * FROM Student WHERE s_name LIKE '%x';

The above query will return all records from Student table where s_name contain 'x' as last
character.

s_id s_Name age

102 Alex 18

ORDER BY Clause
Order by clause is used with SELECT statement for arranging retrieved data in sorted order.
The Order by clause by default sorts the retrieved data in ascending order. To sort the data
in descending order DESC keyword is used with Order by clause.

Syntax of Order By
SELECT column-list|* FROM table-name ORDER BY ASC | DESC;

Using default Order by
Consider the following Emp table,

eid name age salary

401 Anu 22 9000

90

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SELECT * FROM Emp ORDER BY salary;

The above query will return the resultant data in ascending order of the salary.

eid name age salary

403 Rohan 34 6000

402 Shane 29 8000

405 Tiger 35 8000

401 Anu 22 9000

404 Scott 44 10000

Using Order by DESC
Consider the Emp table described above,

SELECT * FROM Emp ORDER BY salary DESC;

The above query will return the resultant data in descending order of the salary.

91

eid name age salary

404 Scott 44 10000

401 Anu 22 9000

405 Tiger 35 8000

402 Shane 29 8000

403 Rohan 34 6000

Group By Clause
Group by clause is used to group the results of a SELECT query based on one or more
columns. It is also used with SQL functions to group the result from one or more tables.

Syntax for using Group by in a statement.

SELECT column_name, function(column_name)

FROM table_name

WHERE condition

GROUP BY column_name

Example of Group by in a Statement
Consider the following Emp table.

eid name age salary

401 Anu 22 9000

92

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 9000

405 Tiger 35 8000

Here we want to find name and age of employees grouped by their salaries or in other
words, we will be grouping employees based on their salaries, hence, as a result, we will
get a data set, with unique salaries listed, along side the first employee's name and age to
have that salary. Hope you are getting the point here!

group by is used to group different row of data together based on any one column.

SQL query for the above requirement will be,

SELECT name, age

FROM Emp GROUP BY salary

Result will be,

name age

Rohan 34

Shane 29

Anu 22

Example of Group by in a Statement

with WHERE clause

93

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 9000

405 Tiger 35 8000

SQL query will be,

SELECT name, salary

FROM Emp

WHERE age > 25

GROUP BY salary

Result will be.

name salary

Rohan 6000

Shane 8000

Scott 9000

You must remember that Group By clause will always come at the end of the SQL query,
just like the Order by clause.

94

HAVING Clause
Having clause is used with SQL Queries to give more precise condition for a statement. It is
used to mention condition in Group by based SQL queries, just like WHERE clause is used
with SELECT query.

Syntax for HAVING clause is,

SELECT column_name, function(column_name)

FROM table_name

WHERE column_name condition

GROUP BY column_name

HAVING function(column_name) condition

Example of SQL Statement using HAVING
Consider the following Sale table.

oid order_name previous_balance customer

11 ord1 2000 Alex

12 ord2 1000 Adam

13 ord3 2000 Abhi

14 ord4 1000 Adam

15 ord5 2000 Alex

Suppose we want to find the customer whose previous_balance sum is more than 3000.

We will use the below SQL query,

SELECT *

FROM sale GROUP BY customer

95

HAVING sum(previous_balance) > 3000

Result will be,

oid order_name previous_balance customer

11 ord1 2000 Alex

The main objective of the above SQL query was to find out the name of the customer who
has had a previous_balance more than 3000, based on all the previous sales made to the
customer, hence we get the first row in the table for customer Alex.

DISTINCT keyword
The distinct keyword is used with SELECT statement to retrieve unique values from the
table. Distinct removes all the duplicate records while retrieving records from any table in
the database.

Syntax for DISTINCT Keyword
SELECT DISTINCT column-name FROM table-name;

Example using DISTINCT Keyword
Consider the following Emp table. As you can see in the table below, there is
employee name, along with employee salary and age.

In the table below, multiple employees have the same salary, so we will be
using DISTINCT keyword to list down distinct salary amount, that is currently being paid to
the employees.

eid name age salary

401 Anu 22 5000

402 Shane 29 8000

96

403 Rohan 34 10000

404 Scott 44 10000

405 Tiger 35 8000

SELECT DISTINCT salary FROM Emp;

The above query will return only the unique salary from Emp table.

salary

5000

8000

10000

AND & OR operator
The AND and OR operators are used with the WHERE clause to make more precise conditions
for fetching data from database by combining more than one condition together.

AND operator
AND operator is used to set multiple conditions with the WHERE clause,
alongside, SELECT, UPDATE or DELETE SQL queries.

Example of AND operator
Consider the following Emp table

97

eid name age salary

401 Anu 22 5000

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

405 Tiger 35 9000

SELECT * FROM Emp WHERE salary < 10000 AND age > 25

The above query will return records where salary is less than 10000 and age greater
than 25. Hope you get the concept here. We have used the AND operator to specify two
conditions with WHEREclause.

eid name age salary

402 Shane 29 8000

405 Tiger 35 9000

OR operator
OR operator is also used to combine multiple conditions with WHERE clause. The only
difference between AND and OR is their behaviour.

When we use AND to combine two or more than two conditions, records satisfying all the
specified conditions will be there in the result.

98

But in case of OR operator, atleast one condition from the conditions specified must be
satisfied by any record to be in the resultset.

Example of OR operator
Consider the following Emp table

eid name age salary

401 Anu 22 5000

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

405 Tiger 35 9000

SELECT * FROM Emp WHERE salary > 10000 OR age > 25

The above query will return records where either salary is greater than 10000 or age is
greater than 25.

402 Shane 29 8000

403 Rohan 34 12000

404 Scott 44 10000

405 Tiger 35 9000

99

Division Operator in SQL
The division operator is used when we have to evaluate queries which contain the
keyword ALL.

Some instances where division operator is used are:

1. Which person has account in all the banks of a particular city?

2. Which students have taken all the courses required to graduate?

In above specified problem statements, the description after the keyword 'all' defines a
set which contains some elements and the final result contains those units which satisfy
these requirements.

Another way how you can identify the usage of division operator is by using the logical
implication of if...then. In context of the above two examples, we can see that the queries
mean that,

1. If there is a bank in that particular city, that person must have an account in that bank.

2. If there is a course in the list of courses required to be graduated, that person must have

taken that course.

Do not worry if you are not clear with all this new things right away, we will try to expain as
we move on with this tutorial.

We shall see the second example, mentioned above, in detail.

Table 1: Course_Taken → It consists of the names of Students against the courses that
they have taken.

Student_Name Course

Robert Databases

Robert Programming Languages

David Databases

100

David Operating Systems

Hannah Programming Languages

Hannah Machine Learning

Tom Operating Systems

Table 2: Course_Required → It consists of the courses that one is required to take in
order to graduate.

Course

Databases

Programming Languages

Using Division Operator
So now, let's try to find out the correct SQL query for getting results for the first requirement,
which is:

Query: Find all the students who can graduate. (i.e. who have taken all the subjects
required for one to graduate.)

Unfortunately, there is no direct way by which we can express the division operator. Let's
walk through the steps, to write the query for the division operator.

1. Find all the students

101

Create a set of all students that have taken courses. This can be done easily using the
following command.

CREATE TABLE AllStudents AS SELECT DISTINCT Student_Name FROM Course_Taken

This command will return the table AllStudents, as the resultset:

Student_name

Robert

David

Hannah

Tom

2. Find all the students and the courses required to

graduate
Next, we will create a set of students and the courses they need to graduate. We can
express this in the form of Cartesian Product of AllStudents and Course_Required using
the following command.

CREATE table StudentsAndRequired AS

SELECT AllStudents.Student_Name, Course_Required.Course

FROM AllStudents, Course_Required

Now the new resultset - table StudentsAndRequired will be:

Student_Name Course

Robert Databases

102

Robert Programming Languages

David Databases

David Programming Languages

Hannah Databases

Hannah Programming Languages

Tom Databases

Tom Programming Languages

3. Find all the students and the required courses

they have not taken
Here, we are taking our first step for finding the students who cannot graduate. The idea is
to simply find the students who have not taken certain courses that are required for
graduation and hence they wont be able to graduate. This is simply all those tuples/rows
which are present in StudentsAndRequired and not present in Course_Taken.

CREATE table StudentsAndNotTaken AS

SELECT * FROM StudentsAndRequired WHERE NOT EXISTS

(Select * FROM Course_Taken WHERE StudentsAndRequired.Student_Name =
Course_Taken.Student_Name

AND StudentsAndRequired.Course = Course_Taken.Course)

The table StudentsAndNotTaken comes out to be:

Student_Name Course

103

David Programming Languages

Hannah Databases

Tom Databases

Tom Programming Languages

4. Find all students who cannot graduate
All the students who are present in the table StudentsAndNotTaken are the ones who
cannot graduate. Therefore, we can find the students who cannot graduate as,

CREATE table CannotGraduate AS SELECT DISTINCT Student_Name FROM StudentsAndNotTaken

Student_name

David

Hannah

Tom

5. Find all students who can graduate
The students who can graduate are simply those who are present in AllStudents but not
in CannotGraduate. This can be done by the following query:

CREATE Table CanGraduate AS SELECT * FROM AllStudents

WHERE NOT EXISTS

104

(SELECT * FROM CannotGraduate WHERE

 CannotGraduate.Student_name = AllStudents.Student_name)

The results will be as follows:

Student_name

Robert

Hence we just learned, how different steps can lead us to the final answer. Now let us see
how to write all these 5 steps in one single query so that we do not have to create so many
tables.

SELECT DISTINCT x.Student_Name FROM Course_Taken AS x WHERE NOT

EXISTS(SELECT * FROM Course_Required AS y WHERE NOT

EXISTS(SELECT * FROM Course_Taken AS z

 WHERE z.Student_name = x.Student_name

 AND z.Course = y.Course))

Student_name

Robert

This gives us the same result just like the 5 steps above.

SQL Constraints
SQL Constraints are rules used to limit the type of data that can go into a table, to maintain
the accuracy and integrity of the data inside table.

Constraints can be divided into the following two types,

1. Column level constraints: Limits only column data.

2. Table level constraints: Limits whole table data.

Constraints are used to make sure that the integrity of data is maintained in the database.
Following are the most used constraints that can be applied to a table.

105

 NOT NULL

 UNIQUE

 PRIMARY KEY

 FOREIGN KEY

 CHECK

 DEFAULT

NOT NULL Constraint
NOT NULL constraint restricts a column from having a NULL value. Once NOT
NULL constraint is applied to a column, you cannot pass a null value to that column. It
enforces a column to contain a proper value.

One important point to note about this constraint is that it cannot be defined at table level.

Example using NOT NULL constraint
CREATE TABLE Student(s_id int NOT NULL, Name varchar(60), Age int);

The above query will declare that the s_id field of Student table will not take NULL value.

UNIQUE Constraint
UNIQUE constraint ensures that a field or column will only have unique values.
A UNIQUE constraint field will not have duplicate data. This constraint can be applied at
column level or table level.

Using UNIQUE constraint when creating a Table

(Table Level)
Here we have a simple CREATE query to create a table, which will have a column s_id with
unique values.

106

CREATE TABLE Student(s_id int NOT NULL UNIQUE, Name varchar(60), Age int);

The above query will declare that the s_id field of Student table will only have unique
values and wont take NULL value.

Using UNIQUE constraint after Table is created

(Column Level)
ALTER TABLE Student ADD UNIQUE(s_id);

The above query specifies that s_id field of Student table will only have unique value.

Primary Key Constraint
Primary key constraint uniquely identifies each record in a database. A Primary Key must
contain unique value and it must not contain null value. Usually Primary Key is used to
index the data inside the table.

Using PRIMARY KEY constraint at Table Level
CREATE table Student (s_id int PRIMARY KEY, Name varchar(60) NOT NULL, Age int);

The above command will creates a PRIMARY KEY on the s_id.

Using PRIMARY KEY constraint at Column Level
ALTER table Student ADD PRIMARY KEY (s_id);

The above command will creates a PRIMARY KEY on the s_id.

Foreign Key Constraint

107

FOREIGN KEY is used to relate two tables. FOREIGN KEY constraint is also used to
restrict actions that would destroy links between tables. To understand FOREIGN KEY, let's
see its use, with help of the below tables:

Customer_Detail Table

c_id Customer_Name address

101 Adam Noida

102 Alex Delhi

103 Stuart Rohtak

Order_Detail Table

Order_id Order_Name c_id

10 Order1 101

11 Order2 103

12 Order3 102

In Customer_Detail table, c_id is the primary key which is set as foreign key
in Order_Detail table. The value that is entered in c_id which is set as foreign key
in Order_Detail table must be present in Customer_Detail table where it is set as primary
key. This prevents invalid data to be inserted into c_id column of Order_Detail table.

If you try to insert any incorrect data, DBMS will return error and will not allow you to insert
the data.

Using FOREIGN KEY constraint at Table Level
CREATE table Order_Detail(

108

 order_id int PRIMARY KEY,

 order_name varchar(60) NOT NULL,

 c_id int FOREIGN KEY REFERENCES Customer_Detail(c_id)

);

In this query, c_id in table Order_Detail is made as foriegn key, which is a reference
of c_id column in Customer_Detail table.

Using FOREIGN KEY constraint at Column Level
ALTER table Order_Detail ADD FOREIGN KEY (c_id) REFERENCES Customer_Detail(c_id);

Behaviour of Foriegn Key Column on Delete
There are two ways to maintin the integrity of data in Child table, when a particular record is
deleted in the main table. When two tables are connected with Foriegn key, and certain
data in the main table is deleted, for which a record exits in the child table, then we must
have some mechanism to save the integrity of data in the child table.

1. On Delete Cascade : This will remove the record from child table, if that value of

foriegn key is deleted from the main table.

2. On Delete Null : This will set all the values in that record of child table as NULL, for

which the value of foriegn key is deleted from the main table.

109

3. If we don't use any of the above, then we cannot delete data from the main table for

which data in child table exists. We will get an error if we try to do so.

ERROR : Record in child table exist

CHECK Constraint
CHECK constraint is used to restrict the value of a column between a range. It performs
check on the values, before storing them into the database. Its like condition checking
before saving data into a column.

Using CHECK constraint at Table Level
CREATE table Student(

 s_id int NOT NULL CHECK(s_id > 0),

 Name varchar(60) NOT NULL,

 Age int

);

The above query will restrict the s_id value to be greater than zero.

Using CHECK constraint at Column Level
ALTER table Student ADD CHECK(s_id > 0);

What are SQL Functions?
SQL provides many built-in functions to perform operations on data. These functions are
useful while performing mathematical calculations, string concatenations, sub-strings etc.
SQL functions are divided into two categories,

1. Aggregate Functions

2. Scalar Functions

110

Aggregate Functions
These functions return a single value after performing calculations on a group of values.
Following are some of the frequently used Aggregrate functions.

AVG() Function
Average returns average value after calculating it from values in a numeric column.

Its general syntax is,

SELECT AVG(column_name) FROM table_name

Using AVG() function

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find average salary will be,

SELECT avg(salary) from Emp;

Result of the above query will be,

111

avg(salary)

8200

COUNT() Function
Count returns the number of rows present in the table either based on some condition or
without condition.

Its general syntax is,

SELECT COUNT(column_name) FROM table-name

Using COUNT() function

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to count employees, satisfying specified condition is,

SELECT COUNT(name) FROM Emp WHERE salary = 8000;

112

Result of the above query will be,

count(name)

2

Example of COUNT(distinct)

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query is,

SELECT COUNT(DISTINCT salary) FROM emp;

Result of the above query will be,

count(distinct salary)

4

113

FIRST() Function
First function returns first value of a selected column

Syntax for FIRST function is,

SELECT FIRST(column_name) FROM table-name;

Using FIRST() function

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query will be,

SELECT FIRST(salary) FROM Emp;

and the result will be,

first(salary)

9000

114

LAST() Function
LAST function returns the return last value of the selected column.

Syntax of LAST function is,

SELECT LAST(column_name) FROM table-name;

Using LAST() function

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query will be,

SELECT LAST(salary) FROM emp;

Result of the above query will be,

last(salary)

8000

115

MAX() Function
MAX function returns maximum value from selected column of the table.

Syntax of MAX function is,

SELECT MAX(column_name) from table-name;

Using MAX() function

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find the Maximum salary will be,

SELECT MAX(salary) FROM emp;

Result of the above query will be,

MAX(salary)

10000

116

MIN() Function
MIN function returns minimum value from a selected column of the table.

Syntax for MIN function is,

SELECT MIN(column_name) from table-name;

Using MIN() function

Consider the following Emp table,

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find minimum salary is,

SELECT MIN(salary) FROM emp;

Result will be,

MIN(salary)

6000

117

SUM() Function
SUM function returns total sum of a selected columns numeric values.

Syntax for SUM is,

SELECT SUM(column_name) from table-name;

Using SUM() function

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

403 Rohan 34 6000

404 Scott 44 10000

405 Tiger 35 8000

SQL query to find sum of salaries will be,

SELECT SUM(salary) FROM emp;

Result of above query is,

SUM(salary)

41000

118

Scalar Functions
Scalar functions return a single value from an input value. Following are some frequently
used Scalar Functions in SQL.

UCASE() Function
UCASE function is used to convert value of string column to Uppercase characters.

Syntax of UCASE,

SELECT UCASE(column_name) from table-name;

Using UCASE() function

Consider the following Emp table

eid name age salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

SQL query for using UCASE is,

SELECT UCASE(name) FROM emp;

Result is,

119

UCASE(name)

ANU

SHANE

ROHAN

SCOTT

TIGER

LCASE() Function
LCASE function is used to convert value of string columns to Lowecase characters.

Syntax for LCASE is,

SELECT LCASE(column_name) FROM table-name;

Using LCASE() function

Consider the following Emp table

eid name age salary

401 Anu 22 9000

402 Shane 29 8000

120

403 Rohan 34 6000

404 SCOTT 44 10000

405 Tiger 35 8000

SQL query for converting string value to Lower case is,

SELECT LCASE(name) FROM emp;

Result will be,

LCASE(name)

anu

shane

rohan

scott

tiger

MID() Function
MID function is used to extract substrings from column values of string type in a table.

Syntax for MID function is,

SELECT MID(column_name, start, length) from table-name;

121

Using MID() function

Consider the following Emp table

eid name age salary

401 anu 22 9000

402 shane 29 8000

403 rohan 34 6000

404 scott 44 10000

405 Tiger 35 8000

SQL query will be,

SELECT MID(name,2,2) FROM emp;

Result will come out to be,

MID(name,2,2)

nu

ha

oh

co

122

ig

ROUND() Function
ROUND function is used to round a numeric field to number of nearest integer. It is used on
Decimal point values.

Syntax of Round function is,

SELECT ROUND(column_name, decimals) from table-name;

Using ROUND() function

Consider the following Emp table

eid name age salary

401 anu 22 9000.67

402 shane 29 8000.98

403 rohan 34 6000.45

404 scott 44 10000

405 Tiger 35 8000.01

SQL query is,

SELECT ROUND(salary) from emp;

Result will be,

123

ROUND(salary)

9001

8001

6000

10000

8000

SQL JOIN
SQL Join is used to fetch data from two or more tables, which is joined to appear as single
set of data. It is used for combining column from two or more tables by using values
common to both tables.

JOIN Keyword is used in SQL queries for joining two or more tables. Minimum required
condition for joining table, is (n-1) where n, is number of tables. A table can also join to
itself, which is known as, Self Join.

Types of JOIN
Following are the types of JOIN that we can use in SQL:

 Inner

 Outer

 Left

 Right

124

Cross JOIN or Cartesian Product
This type of JOIN returns the cartesian product of rows from the tables in Join. It will return
a table which consists of records which combines each row from the first table with each
row of the second table.

Cross JOIN Syntax is,

SELECT column-name-list

FROM

table-name1 CROSS JOIN table-name2;

Example of Cross JOIN

Following is the class table,

ID NAME

1 abhi

2 adam

4 alex

and the class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Cross JOIN query will be,

125

SELECT * FROM

class CROSS JOIN class_info;

The resultset table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 1 DELHI

4 alex 1 DELHI

1 abhi 2 MUMBAI

2 adam 2 MUMBAI

4 alex 2 MUMBAI

1 abhi 3 CHENNAI

2 adam 3 CHENNAI

4 alex 3 CHENNAI

As you can see, this join returns the cross product of all the records present in both the
tables.

INNER Join or EQUI Join
This is a simple JOIN in which the result is based on matched data as per the equality
condition specified in the SQL query.

126

Inner Join Syntax is,

SELECT column-name-list FROM

table-name1 INNER JOIN table-name2

WHERE table-name1.column-name = table-name2.column-name;

Example of INNER JOIN

Consider a class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

and the class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Inner JOIN query will be,

SELECT * from class INNER JOIN class_info where class.id = class_info.id;

The resultset table will look like,

127

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

Natural JOIN
Natural Join is a type of Inner join which is based on column having same name and same
datatype present in both the tables to be joined.

The syntax for Natural Join is,

SELECT * FROM

table-name1 NATURAL JOIN table-name2;

Example of Natural JOIN

Here is the class table,

ID NAME

1 abhi

2 adam

3 alex

128

4 anu

and the class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

Natural join query will be,

SELECT * from class NATURAL JOIN class_info;

The resultset table will look like,

ID NAME Address

1 abhi DELHI

2 adam MUMBAI

3 alex CHENNAI

In the above example, both the tables being joined have ID column(same name and same
datatype), hence the records for which value of ID matches in both the tables will be the

result of Natural Join of these two tables.

OUTER JOIN
Outer Join is based on both matched and unmatched data. Outer Joins subdivide further
into,

129

1. Left Outer Join

2. Right Outer Join

3. Full Outer Join

LEFT Outer Join
The left outer join returns a resultset table with the matched data from the two tables and
then the remaining rows of the left table and null from the right table's columns.

Syntax for Left Outer Join is,

SELECT column-name-list FROM

table-name1 LEFT OUTER JOIN table-name2

ON table-name1.column-name = table-name2.column-name;

To specify a condition, we use the ON keyword with Outer Join.

Left outer Join Syntax for Oracle is,

SELECT column-name-list FROM

table-name1, table-name2 on table-name1.column-name = table-name2.column-name(+);

Example of Left Outer Join

Here is the class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

130

5 ashish

and the class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Left Outer Join query will be,

SELECT * FROM class LEFT OUTER JOIN class_info ON (class.id = class_info.id);

The resultset table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

4 anu null null

131

5 ashish null null

RIGHT Outer Join
The right outer join returns a resultset table with the matched data from the two tables
being joined, then the remaining rows of the right table and null for the
remaining left table's columns.

Syntax for Right Outer Join is,

SELECT column-name-list FROM

table-name1 RIGHT OUTER JOIN table-name2

ON table-name1.column-name = table-name2.column-name;

Right outer Join Syntax for Oracle is,

SELECT column-name-list FROM

table-name1, table-name2

ON table-name1.column-name(+) = table-name2.column-name;

Example of Right Outer Join

Once again the class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

132

5 ashish

and the class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Right Outer Join query will be,

SELECT * FROM class RIGHT OUTER JOIN class_info ON (class.id = class_info.id);

The resultant table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

null null 7 NOIDA

133

null null 8 PANIPAT

Full Outer Join
The full outer join returns a resultset table with the matched data of two table then
remaining rows of both left table and then the right table.

Syntax of Full Outer Join is,

SELECT column-name-list FROM

table-name1 FULL OUTER JOIN table-name2

ON table-name1.column-name = table-name2.column-name;

Example of Full outer join is,

The class table,

ID NAME

1 abhi

2 adam

3 alex

4 anu

5 ashish

and the class_info table,

ID Address

134

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Full Outer Join query will be like,

SELECT * FROM class FULL OUTER JOIN class_info ON (class.id = class_info.id);

The resultset table will look like,

ID NAME ID Address

1 abhi 1 DELHI

2 adam 2 MUMBAI

3 alex 3 CHENNAI

4 anu null null

5 ashish null null

null null 7 NOIDA

135

null null 8 PANIPAT

SQL Alias - AS Keyword
Alias is used to give an alias name to a table or a column, which can be a resultset table
too. This is quite useful in case of large or complex queries. Alias is mainly used for giving a
short alias name for a column or a table with complex names.

Syntax of Alias for table names,

SELECT column-name FROM table-name AS alias-name

Following is an SQL query using alias,

SELECT * FROM Employee_detail AS ed;

Syntax for defining alias for columns will be like,

SELECT column-name AS alias-name FROM table-name;

Example using alias for columns,

SELECT customer_id AS cid FROM Emp;

Example of Alias in SQL Query
Consider the following two tables,

The class table,

ID Name

1 abhi

2 adam

3 alex

4 anu

136

5 ashish

and the class_info table,

ID Address

1 DELHI

2 MUMBAI

3 CHENNAI

7 NOIDA

8 PANIPAT

Below is the Query to fetch data from both the tables using SQL Alias,

SELECT C.id, C.Name, Ci.Address from Class AS C, Class_info AS Ci where C.id = Ci.id;

and the resultset table will look like,

ID Name Address

1 abhi DELHI

2 adam MUMBAI

3 alex CHENNAI

SQL Alias seems to be quite a simple feature of SQL, but it is highly useful when you are
working with more than 3 tables and have to use JOIN on them.

137

SET Operations in SQL
SQL supports few Set operations which can be performed on the table data. These are
used to get meaningful results from data stored in the table, under different special
conditions.

In this tutorial, we will cover 4 different types of SET operations, along with example:

1. UNION

2. UNION ALL

3. INTERSECT

4. MINUS

UNION Operation
UNION is used to combine the results of two or more SELECT statements. However it will
eliminate duplicate rows from its resultset. In case of union, number of columns and
datatype must be same in both the tables, on which UNION operation is being applied.

Example of UNION

The First table,

ID Name

138

1 abhi

2 adam

The Second table,

ID Name

2 adam

3 Chester

Union SQL query will be,

SELECT * FROM First

UNION

SELECT * FROM Second;

The resultset table will look like,

ID NAME

1 abhi

2 adam

3 Chester

UNION ALL
This operation is similar to Union. But it also shows the duplicate rows.

139

Example of Union All

The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Union All query will be like,

SELECT * FROM First

UNION ALL

SELECT * FROM Second;

The resultset table will look like,

140

ID NAME

1 abhi

2 adam

2 adam

3 Chester

INTERSECT
Intersect operation is used to combine two SELECT statements, but it only retuns the records
which are common from both SELECT statements. In case of Intersect the number of
columns and datatype must be same.

NOTE: MySQL does not support INTERSECT operator.

Example of Intersect

The First table,

141

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Intersect query will be,

SELECT * FROM First

INTERSECT

SELECT * FROM Second;

The resultset table will look like

ID NAME

2 adam

MINUS
The Minus operation combines results of two SELECT statements and return only those in
the final result, which belongs to the first set of the result.

142

Example of Minus

The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Minus query will be,

SELECT * FROM First

MINUS

SELECT * FROM Second;

The resultset table will look like,

143

ID NAME

1 abhi

What is an SQL Sequence?
Sequence is a feature supported by some database systems to produce unique values on
demand. Some DBMS like MySQL supports AUTO_INCREMENT in place of Sequence.

AUTO_INCREMENT is applied on columns, it automatically increments the column value
by 1 each time a new record is inserted into the table.

Sequence is also some what similar to AUTO_INCREMENT but it has some additional features
too.

Creating a Sequence
Syntax to create a sequence is,

CREATE SEQUENCE sequence-name

 START WITH initial-value

 INCREMENT BY increment-value

 MAXVALUE maximum-value

 CYCLE | NOCYCLE;

 The initial-value specifies the starting value for the Sequence.

 The increment-value is the value by which sequence will be incremented.

 The maximum-value specifies the upper limit or the maximum value upto which

sequence will increment itself.

 The keyword CYCLE specifies that if the maximum value exceeds the set limit, sequence

will restart its cycle from the begining.

 And, NO CYCLE specifies that if sequence exceeds MAXVALUE value, an error will be

thrown.

144

Using Sequence in SQL Query
Let's start by creating a sequence, which will start from 1, increment by 1 with a maximum
value of 999.

CREATE SEQUENCE seq_1

START WITH 1

INCREMENT BY 1

MAXVALUE 999

CYCLE;

Now let's use the sequence that we just created above.

Below we have a class table,

ID NAME

1 abhi

2 adam

4 alex

The SQL query will be,

INSERT INTO class VALUE(seq_1.nextval, 'anu');

Resultset table will look like,

ID NAME

1 abhi

2 adam

145

4 alex

1 anu

Once you use nextval the sequence will increment even if you don't Insert any record into
the table.

SQL VIEW
A VIEW in SQL is a logical subset of data from one or more tables. View is used to restrict
data access.

Syntax for creating a View,

CREATE or REPLACE VIEW view_name

 AS

 SELECT column_name(s)

 FROM table_name

 WHERE condition

As you may have understood by seeing the above SQL query, a view is created using data
fetched from some other table(s). It's more like a temporary table created with data.

Creating a VIEW
Consider following Sale table,

oid order_name previous_balance customer

11 ord1 2000 Alex

12 ord2 1000 Adam

13 ord3 2000 Abhi

146

14 ord4 1000 Adam

15 ord5 2000 Alex

SQL Query to Create a View from the above table will be,

CREATE or REPLACE VIEW sale_view

AS

SELECT * FROM Sale WHERE customer = 'Alex';

The data fetched from SELECT statement will be stored in another object called sale_view.
We can use CREATE and REPLACE seperately too, but using both together works better, as if
any view with the specified name exists, this query will replace it with fresh data.

Displaying a VIEW
The syntax for displaying the data in a view is similar to fetching data from a table using
a SELECTstatement.

SELECT * FROM sale_view;

Force VIEW Creation
FORCE keyword is used while creating a view, forcefully. This keyword is used to create a
View even if the table does not exist. After creating a force View if we create the base table
and enter values in it, the view will be automatically updated.

Syntax for forced View is,

CREATE or REPLACE FORCE VIEW view_name AS

 SELECT column_name(s)

 FROM table_name

 WHERE condition;

Update a VIEW
UPDATE command for view is same as for tables.

147

Syntax to Update a View is,

UPDATE view-name SET VALUE

WHERE condition;

NOTE: If we update a view it also updates base table data automatically.

Read-Only VIEW
We can create a view with read-only option to restrict access to the view.

Syntax to create a view with Read-Only Access

CREATE or REPLACE FORCE VIEW view_name AS

 SELECT column_name(s)

 FROM table_name

 WHERE condition WITH read-only;

The above syntax will create view for read-only purpose, we cannot Update or Insert data
into read-only view. It will throw an error.

Types of View
There are two types of view,

 Simple View

 Complex View

Simple View Complex View

Created from one table Created from one or more table

Does not contain functions Contain functions

Does not contain groups of data Contains groups of data

148

	What is Data?
	What is a Database?
	What is DBMS?
	Characteristics of Database Management System
	Advantages of DBMS
	Disadvantages of DBMS

	Components of DBMS
	DBMS Components: Hardware
	DBMS Components: Software
	DBMS Components: Data
	DBMS Components: Procedures
	DBMS Components: Database Access Language
	Users

	Understanding DBMS Architecture
	2-tier DBMS Architecture
	3-tier DBMS Architecture

	DBMS Database Models
	Hierarchical Model
	Network Model
	Entity-relationship Model
	Relational Model

	Basic Concepts of ER Model in DBMS
	ER Model: Entity and Entity Set
	ER Model: Attributes
	ER Model: Keys
	ER Model: Relationships

	Working with ER Diagrams
	Components of ER Diagram
	Entity
	Relationships between Entities - Weak and Strong
	Attributes for any Entity
	Weak Entity
	Key Attribute for any Entity
	Derived Attribute for any Entity
	Multivalued Attribute for any Entity
	Composite Attribute for any Entity
	ER Diagram: Entity
	ER Diagram: Weak Entity
	ER Diagram: Attribute
	ER Diagram: Key Attribute
	ER Diagram: Composite Attribute
	ER Diagram: Relationship
	ER Diagram: Binary Relationship
	One to One Relationship
	One to Many Relationship
	Many to One Relationship
	Many to Many Relationship

	ER Diagram: Recursive Relationship
	ER Diagram: Ternary Relationship

	The Enhanced ER Model
	Generalization
	Specialization
	Aggregration

	Codd's Rule for Relational DBMS
	Rule zero
	Rule 1: Information rule
	Rule 2: Guaranted Access
	Rule 3: Systematic treatment of NULL
	Rule 4: Active Online Catalog
	Rule 5: Powerful and Well-Structured Language
	Rule 6: View Updation Rule
	Rule 7: Relational Level Operation
	Rule 8: Physical Data Independence
	Rule 9: Logical Data Independence
	Rule 10: Integrity Independence
	Rule 11: Distribution Independence
	Rule 12: Nonsubversion Rule

	Basic Relational DBMS Concepts
	RDBMS: What is Table ?
	RDBMS: What is a Tuple?
	RDBMS: What is an Attribute?
	Attribute Domain

	What is a Relation Schema?
	What is a Relation Key?
	Relational Integrity Constraints
	Key Constraints
	Domain Constraint
	Referential Integrity Constraint

	What is Relational Algebra?
	Select Operation (σ)
	Project Operation (∏)
	Union Operation (∪)
	Set Difference (-)
	Cartesian Product (X)
	Rename Operation (ρ)

	What is Relational Calculus?
	Tuple Relational Calculus (TRC)
	Domain Relational Calculus (DRC)

	ER Model to Relational Model
	Entity becomes Table
	Relationship becomes a Relationship Table
	Points to Remember

	Introduction to Database Keys
	Why we need a Key?
	Super Key
	Candidate Key
	Primary Key
	Composite Key
	Secondary or Alternative key
	Non-key Attributes
	Non-prime Attributes

	Normalization of Database
	Problems Without Normalization
	Insertion Anomaly
	Updation Anomaly
	Deletion Anomaly

	Normalization Rule
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Boyce and Codd Normal Form (BCNF)
	Fourth Normal Form (4NF)

	What is First Normal Form (1NF)?
	Rules for First Normal Form
	Rule 1: Single Valued Attributes
	Rule 2: Attribute Domain should not change
	Rule 3: Unique name for Attributes/Columns
	Rule 4: Order doesn't matters

	Time for an Example
	How to solve this Problem?

	What is Second Normal Form?
	What is Dependency?
	What is Partial Dependency?
	But where is Partial Dependency?

	How to remove Partial Dependency?
	Quick Recap

	Third Normal Form (3NF)
	Student Table
	Subject Table
	Score Table
	Requirements for Third Normal Form
	What is Transitive Dependency?
	How to remove Transitive Dependency?
	Score Table: In 3rd Normal Form
	The new Exam table

	Advantage of removing Transitive Dependency

	Boyce-Codd Normal Form (BCNF)
	Rules for BCNF
	Time for an Example
	Why this table is not in BCNF?
	How to satisfy BCNF?

	A more Generic Explanation

	Fourth Normal Form (4NF)
	Rules for 4th Normal Form
	What is Multi-valued Dependency?
	Time for an Example
	How to satisfy 4th Normal Form?

	Introduction to SQL
	SQL Command
	DDL: Data Definition Language
	DML: Data Manipulation Language
	TCL: Transaction Control Language
	DCL: Data Control Language
	DQL: Data Query Language

	SQL: create command
	Creating a Database
	Example for creating Database

	Creating a Table
	Example for creating Table
	Most commonly used datatypes for Table columns

	SQL: ALTER command
	ALTER Command: Add a new Column
	ALTER Command: Add multiple new Columns
	ALTER Command: Add Column with default value
	ALTER Command: Modify an existing Column
	ALTER Command: Rename a Column
	ALTER Command: Drop a Column

	Truncate, Drop or Rename a Table
	TRUNCATE command
	DROP command
	RENAME query

	Using INSERT SQL command
	INSERT command
	Insert value into only specific columns
	Insert NULL value to a column
	Insert Default value to a column

	Using UPDATE SQL command
	UPDATE command
	Updating Multiple Columns
	UPDATE Command: Incrementing Integer Value

	Using DELETE SQL command
	DELETE command
	Delete all Records from a Table
	Delete a particular Record from a Table
	Isn't DELETE same as TRUNCATE

	Commit, Rollback and Savepoint SQL commands
	COMMIT command
	ROLLBACK command
	SAVEPOINT command
	Using Savepoint and Rollback

	Using GRANT and REVOKE
	Allow a User to create session
	Allow a User to create table
	Provide user with space on tablespace to store table
	Grant all privilege to a User
	Grant permission to create any table
	Grant permission to drop any table
	To take back Permissions

	Using the WHERE SQL clause
	Syntax for WHERE clause
	Time for an Example
	Applying condition on Text Fields

	Operators for WHERE clause condition

	SQL LIKE clause
	Wildcard operators
	Example of LIKE clause
	Using _ and %
	Using % only

	ORDER BY Clause
	Syntax of Order By
	Using default Order by
	Using Order by DESC

	Group By Clause
	Example of Group by in a Statement
	Example of Group by in a Statement with WHERE clause

	HAVING Clause
	Example of SQL Statement using HAVING

	DISTINCT keyword
	Syntax for DISTINCT Keyword
	Example using DISTINCT Keyword

	AND & OR operator
	AND operator
	Example of AND operator

	OR operator
	Example of OR operator

	Division Operator in SQL
	Using Division Operator
	1. Find all the students
	2. Find all the students and the courses required to graduate
	3. Find all the students and the required courses they have not taken
	4. Find all students who cannot graduate
	5. Find all students who can graduate

	SQL Constraints
	NOT NULL Constraint
	Example using NOT NULL constraint

	UNIQUE Constraint
	Using UNIQUE constraint when creating a Table (Table Level)
	Using UNIQUE constraint after Table is created (Column Level)

	Primary Key Constraint
	Using PRIMARY KEY constraint at Table Level
	Using PRIMARY KEY constraint at Column Level

	Foreign Key Constraint
	Using FOREIGN KEY constraint at Table Level
	Using FOREIGN KEY constraint at Column Level
	Behaviour of Foriegn Key Column on Delete

	CHECK Constraint
	Using CHECK constraint at Table Level
	Using CHECK constraint at Column Level

	What are SQL Functions?
	Aggregate Functions
	AVG() Function
	Using AVG() function

	COUNT() Function
	Using COUNT() function
	Example of COUNT(distinct)

	FIRST() Function
	Using FIRST() function

	LAST() Function
	Using LAST() function

	MAX() Function
	Using MAX() function

	MIN() Function
	Using MIN() function

	SUM() Function
	Using SUM() function

	Scalar Functions
	UCASE() Function
	Using UCASE() function

	LCASE() Function
	Using LCASE() function

	MID() Function
	Using MID() function

	ROUND() Function
	Using ROUND() function

	SQL JOIN
	Types of JOIN
	Cross JOIN or Cartesian Product
	Example of Cross JOIN

	INNER Join or EQUI Join
	Example of INNER JOIN
	Natural JOIN
	Example of Natural JOIN

	OUTER JOIN
	LEFT Outer Join
	Example of Left Outer Join

	RIGHT Outer Join
	Example of Right Outer Join

	Full Outer Join
	Example of Full outer join is,

	SQL Alias - AS Keyword
	Example of Alias in SQL Query

	SET Operations in SQL
	UNION Operation
	Example of UNION

	UNION ALL
	Example of Union All

	INTERSECT
	Example of Intersect

	MINUS
	Example of Minus

	What is an SQL Sequence?
	Creating a Sequence
	Using Sequence in SQL Query

	SQL VIEW
	Creating a VIEW
	Displaying a VIEW
	Force VIEW Creation
	Update a VIEW
	Read-Only VIEW
	Types of View

