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System of linear equations

System of linear equations
We consider the problem of finding numerically n scalars x1, x2, ..., xn which satisfy the
conditions

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...
an1x1 + an2x2 + · · · + annxn = bn

(1)

where b1, b2, · · · , bm and aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are given real numbers. The system
(1) is known as a system of n linear equation in n unknowns.
We can write the system (1) as follows:

Ax = B

Where, A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

, x =


x1
x2
...
xn

 and b =


b1
b2
...
bn

. A is called the

coefficients matrix.
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System of linear equations

By the virtue of linear algebra it is well known that the above system has a unique
solution if and only if A−1 exists and this is true if and only if detA 6= 0.

Now in the entire chapter we assume that detA 6= 0 so that unique solution exists, then
our aim will be to compute the n unknown vector x up to a desired degree of accuracy.

Broadly there are two types numerical methods are available to compute such system,
namely:

The direct or exact methods, such as Cramer’s rule, Gauss’s elimination method
etc.

The iterative methods such as Gauss Jacobi method, Gauss Seidel method etc.
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Gauss’s elimination method

Gauss’s elimination method

Let us assume that the system (1) has unique solution and consider the augmented
matrix [A|b] of the system (1).

Now, using elementary row transformations, Gauss elimination method reduces the
matrix A in the augmented matrix to an upper triangular form, such that
[A|b] −→ [U|c]. Then by back substitution we obtain the solution. To do this we
proceed as follows.
First, we write

a
(1)
ij = aij , b

(1)
i = bi , i , j = 1, 2, · · · , n (2)

Let a
(1)
11 6= 0, multiply the first equation of (1) by mi1 = −a(1)i1 /a

(1)
11 and then add to the

ith equation when x1 is eliminated from that equation, where i = 2, 3, · · · , n, which
gives the following equivalent system of equations
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Gauss’s elimination method

a
(1)
11 x1 + a

(1)
12 x2 + · · · + a

(1)
1n xn = b

(1)
1

a
(2)
22 x2 + · · · + a

(2)
2n xn = b

(2)
2

· · · · · · · · · · · ·
a
(2)
n2 x2 + · · · + a

(2)
nn xn = b

(2)
n

(3)

where
a
(2)
ij = a

(1)
ij + mi1a1j , b

(2)
i = b

(1)
i + mi1b

(1)
1 , i , j = 2, 3, · · · , n. (4)

Again assume, a
(2)
22 6= 0. We note that the set of equation (3) except the first one is a

system of n− 1 linear equations in the n− 1 unknowns x2, x3, · · · , xn, and then applying
the same elimination procedure to this system x2 is eliminated from the last n − 2
equations. So, we have equivalent system as follows,

a
(1)
11 x1 + a

(1)
12 x2+ a

(1)
13 x3 + · · · + a

(1)
1n xn = b

(1)
1

a
(2)
22 x2+ a

(2)
23 x3 + · · · + a

(2)
2n xn = b

(2)
2
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Gauss’s elimination method

a
(3)
33 x3 + · · · + a

(3)
3n xn = b

(3)
3

· · · · · ·
a
(3)
n3 x3 + · · · + a

(3)
nn xn = b

(3)
n

(5)

where

mi2 = −a(2)i2 /a
(2)
22

a
(3)
ij = a

(2)
ij + mi2a2j , b

(3)
i = b

(2)
i + mi2b

(2)
2 , i , j = 3, 4, · · · , n. (6)

Continuing this process repeatedly, we obtain the following equivalent system of
equations at the n − 1th step as

a
(1)
11 x1 + a

(1)
12 x2+ a

(1)
13 x3 + · · · + a

(1)
1n xn = b

(1)
1

a
(2)
22 x2+ a

(2)
23 x3 + · · · + a

(2)
2n xn = b

(2)
2

a
(3)
33 x3 + · · · + a

(3)
3n xn = b

(3)
3

· · · · · ·
a
(n)
nn xn = b

(n)
n

(7)
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Gauss’s elimination method

where

mik = −a(k)ik /a
(k)
kk

a
(k+1)
ij = a

(k)
ij + mikakj , b

(k+1)
i = b

(k)
i + mikb

(k)
k ,

i , j = k + 1, k + 2, · · · , n; k = 1, 2, · · · , n. (8)

The leading coefficients of the above system of equations (7) a
(1)
11 , a

(2)
22 ,· · · , a(n)nn , which

are nonzero by assumption, are known as the pivots and the corresponding equations are
called the pivotal equations.
We observe that the coefficient matrix of (7) is

U =


a
(1)
11 a

(1)
12 a

(1)
13 · · · a

(1)
1n

0 a
(2)
22 a

(2)
23 · · · a

(2)
2n

0 0 a
(3)
33 · · · a

(3)
3n

· · · · · · · · · · · · · · ·
0 0 0 · · · a

(n)
nn

 (9)

an upper triangular matrix. Hence, the value of its determinat is
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Gauss’s elimination method

detU = a
(1)
11 a

(2)
22 a

(3)
33 · · · a

(n)
nn (10)

which follows that detU 6= 0 so that the system (7) has a unique solution.
Now the upper triangular system (7) can be easily solved as follows.

From the last equation we get xn = b
(n)
n /a

(n)
nn ; then we substitute this value of xn in the

last but one equation, we get the value of xn−1, and then we substitute these values of
xn and xn−1 in the last but two equation and we compute xn−2; and so on, finally we
get x1.

This process of solving an upper triangular system of linear equations is generally called
back substitution.
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Examples

Examples on Gauss’s elimination method

i). Deduce the upper triangular matrix form the following matrix-4 1 1
1 4 −2
3 2 −4


ii). Solve the following system of equations

x + y − z = 2
2x + 3y + 5z = −3
3x + 2y − 3z = 6

by the Gauss elimination method.
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