Numerical Methods

Dr. Phonindra Nath Das

Department of Mathematics
Ramakrishna Mission Vivekananda Centenary College

Email: phonimath@gmail.com

September 14, 2021

Outline of presentation

(1) Properties and relations of operators
(2) Transcendental and Polynomial equations
(3) Bisection Method
(4) Newton's Method
(5) Exercise

Properties and relations of operators

$$
\Delta f=f(x+h)-f(x)
$$

(i) Forward difference of a constant function is zero i.e., if $f(x)=c$, then $\Delta f(x)=0$.
(ii) If $f(x)$ is any function and k is a constant, then $\Delta[k f(x)]=k \Delta f(x)$.
(iii) If $f(x), g(x)$ be two function, then $\Delta[f(x) \pm g(x)]=\Delta f(x) \pm \Delta g(x)$. This holds for finitely many functions.
(iv) The forward difference follows the laws of indicies,

$$
\Delta m \cdot \Delta^{n} f(x)=\Delta^{m+n} f(x) .
$$

$$
\begin{aligned}
\Delta^{m} \cdot \underline{\Delta^{n} f(x)}= & (\Delta \cdot \Delta \cdot \Delta \cdots m \text { times }) \times \\
& (\underline{\Delta \cdot \Delta \cdot \Delta \cdots n t i m e s}) \times f(x) \\
= & (\Delta \cdot \Delta \cdot \Delta \cdots(m+n) \text { times }) \times f(x) \\
= & \underline{\Delta^{m+n} f(x)}
\end{aligned}
$$

(v)

$$
\begin{aligned}
& \Delta[f(x) \cdot g(x)]=f(x+h) \cdot \Delta g(x)+g(x) \cdot \Delta f(x) \\
& =g(x+h) \cdot \Delta f(x)+f(x) \cdot \Delta g(x) \\
& \Delta[f(x) \cdot g(x)]=f(x+h) g(x+h)-f(x) g(x) \\
& =f(x+h) g(x+h)+\frac{f(x+h) g(x)}{f(x) g(x)} \\
& -f(x+h) g(x)-f(x) g(x) \\
& =f(x+h)[g(x+h)-G(x)]+g(x)[f(x+h)-f(x)] \\
& =f(x+h) \cdot \Delta g(x)+g(x) \cdot \Delta f(x)
\end{aligned}
$$

Again

$$
\begin{aligned}
\Delta[f(x) \cdot g(x)]= & f(x+h) g(x+h)-f(x) g(x) \\
= & f(x+h) g(x+h)+g(x+h) f(x) \\
& -g(x+h) f(x)-f(x) g(x) \\
= & g(x+h)[f(x+h)-f(x)]+f(x)[g(x+h)-g(x)] \\
= & g(x+h) \cdot \Delta f(x)+f(x) \cdot \Delta g(x) .
\end{aligned}
$$

(vi) $\Delta\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \cdot \Delta f(x)-f(x) \cdot \Delta g(x)}{g(x+h) g(x)}, \quad g(x) \neq 0$.

$$
\begin{aligned}
\Delta\left[\frac{f(x)}{g(x)}\right] & =\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}=\frac{f(x+h) g(x)-g(x+h) f(x)}{g(x+h) g(x)} \\
& =\frac{f(x+h) g(x)+f(x) g(x)-f(x) g(x)-g(x+h) f(x)}{g(x+h) g(x)} \\
\sqrt{6}>(x) & =\frac{g(x)[f(x+h)-f(x)]-f(x)[g(x+h)-g(x)]}{g(x+h) g(x)} \\
& =\frac{g(x) \cdot \Delta f(x)-f(x) \cdot \Delta g(x)}{g(x+h) g(x)}
\end{aligned}
$$

Transcendental and Polynomial equations

A polynomial equation of degree n will have exactly n roots, real or complex, simple or multiple. A transcendental equation may have one root or no root or infinite number of roots depending on the form of $f(x)$. The methods of finding the roots of $f(x)=0$ are classified as,
(1) Direct Methods and
(2) Numerical Methods.

There are no direct methods for solving higher degree algebraic equations or transcendental equations. If a and b are two numbers such that $f(a)$ and $f(b)$ have opposite signs, then a root of $f(x)=0$ lies in between a and b. We take a or b or any valve in between a or b as first approximation x_{1}. This is further improved by numerical methods.

Here we discuss few important numerical methods to find a root of $f(x)=0$.

Bisection Method

Identify two

points $x=a$ and $x=b$ such that $f(a)$ and $f(b)$ are having opposite signs. Let $f(a)$ be negative and $f(\widehat{b)}$ be positive. Then there will be a root of $f(x)=0$ in between a and b.

Let the first approximation be the mid point of the interval (a, b). i.e.

$$
x_{1}=\frac{a+b}{2}
$$

If $f\left(x_{1}\right)=0$, then x_{1} is a root, other wise root lies between a and x_{1} or x_{1} and b according as $f\left(x_{1}\right)$ is positive or negative.

Then again we bisect the interval and continue the process until the root is found to desired accuracy. Let $f\left(x_{1}\right)$ is positive, then root lies in between a and x_{1}.

The second approximation to the root is given by,

$$
x_{2}=\frac{a+x_{1}}{2}
$$

If $f\left(x_{2}\right)$ is negative, then next approximation is given by

$$
x_{2}=\frac{x_{1}+b}{2}
$$

Similarly we can get other approximations. This method is also called Bolzano method.

Newton's Method

Newton's method for finding a root of a differentiable function $f(x)$ is given by:

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \tag{1}
\end{equation*}
$$

We note that for the formula (1) to be well-defined, we must require that

$$
f^{\prime}\left(x_{n}\right) \neq 0, \text { for any } x_{n} .
$$

To provide us with a list of successive approximation, Newton's method (1) should be supplemented with one initial guess, say x_{0}.

The equation (1) will then provide the values of $x_{1}, x_{2}, x_{3}, \cdots$

One way of obtaining Newton's method is the following:
Given a point x_{n} we are looking for the next point x_{n+1}.
A linear approximation of $f(x)$ at x_{n+1} is

$$
f\left(x_{n+1}\right) \approx f\left(x_{n}\right)+\left(x_{n+1}-x_{n}\right) f^{\prime}\left(x_{n}\right)
$$

Since x_{n+1} should be an approximation to the root of $f(x)$, we set $f\left(x_{n+1}\right)=0$, rearrange the terms and get (1).

Solve the following problems:

(1) Find a root of $f(x)=x e^{x}-1=0$, using Bisection method, correct to three decimal places.
(2) Determine the roots correct to two decimal places using the Bisection method and Newton's method of the following equation

$$
x^{3}-x-4=0 .
$$

