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Jacobi Method for Symmetric Matrices

Let A be the given real symmetric matrix. The eigenvalues of A are real and there exists
a real orthogonal matrix S such that S−1AS is a diagonal matrix D. The diagonalization
is done by applying a series of orthogonal transformations S1, S2, · · · , Sn, · · · as follows.

Among the off-diagonal elements, let |aik| be the numerically largest element. Then
the elements aih, aik, akh, akk form a 2 × 2 submatrix A1 which can be transformed to
a diagonal form. We choose

S∗1 =

[
cos θ − sin θ
sin θ cos θ

]
(1)

and find θ such that the 2× 2 submatrix A1 is diagonalized. We have

S∗1
−1A1S

∗
1 =

[
cos θ sin θ
− sin θ cos θ

] [
aii aik
aki akk

] [
cos θ − sin θ
sin θ cos θ

]
=

[
aii cos2 θ + 2aik sin θ cos θ + akk sin2 θ (akk − aii) sin θ cos θ + aik cos 2θ

(akk − aii) sin θ cos θ + aik cos 2θ aii sin
2 θ + 2aik sin θ cos θ + akk cos2 θ

]
(2)

We now choose θ such that this matrix reduces to a diagonal form. That is, we put

1

2
(akk − aii) sin θ cos θ + aik cos 2θ = 0

or, tan 2θ =
2aik

aii − akk
. (3)

This equation produces four values of θ and in order that we may get smallest rotation
we require −π

4
< θ < π

4
. From (12) we get

θ =
1

2
tan−1

(
2aik

aii − akk

)
, if aii 6= akk (4)

If aii = akk, then

θ =

{
π
4
, aik > 0

−π
4
, aik < 0

(5)

1



PG
SE
M
1

CC
10
5

PN
D

@NumericalAnalysis

With the value of θ given in (13), the off-diagonal elements in (26) vanish and the diago-
nal elements are simplified. The first step is now completed by performing the rotation
S−11 AS1. In the next step the largest off-diagonal element in magnitude in the new rota-
ted matrix is found and the procedure is repeated. We now perform a series of such two
dimensional rotations. After finding θ at each step, the rotation is performed with the
corresponding orthogonal matrix. For example, if |aik| is the largest off-diagonal element
then we write S1 as

S1 =



1
1

. . .

cos θ · · · − sin θ
...

. . .
...

sin θ · · · cos θ
. . .

1
1


where cos θ, − sin θ, sin θ, cos θ are located in (i, i), (i, k), (k, i) and (k, k) positions
respectively. After making r transformations, we get

Br = S−1r S−1r−1 · · ·S−11 AS1 · · ·Sr−1Sr
= (S1S2 · · ·Sr−1Sr)−1A(S1S2 · · ·Sr−1Sr)
= S−1AS (6)

where S = S1S2 · · ·Sr−1Sr.

As r → ∞, Br approaches a diagonal matrix with the eigenvalues on the leading
diagonal. We then have the eigenvectors as the corresponding columns of S. The mini-
mum number of rotations required to bring A into a diagonal form may be (n−1)n

2
. This

procedure, described to reduce the symmetric matrix A to a diagonal matrix D is called
the Jacobi method.

The method suffers from the following disadvantage:
The elements annihilated by a plane rotation may not necessarily remain zero during
subsequent transformations. The value of θ must be checked for its accuracy by checking
whether | sin2 θ+cos2 θ−1|, is sufficiently small. The convergence to the eigenvalues takes
place even if the pivots are not selected on the basis of their magnitudes, but are selected
in the “typewriter fashion”.

That is annihilate a21, a31, a32, a41, a42, a43 etc. This modification is called the
special cyclic Jacobi method. In this method there is no search for the pivots.

Example: Find all the eigenvalues and eigenvectors of the matrix

 1
√

2 2√
2 3

√
2

2
√

2 1

.
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The largest off diagonal element is c13 = a31 = 2. The other two elements in this 2 × 2
submatrix are a11 = 1 and a33 = 1.
Therefore,

θ = 1
2

tan−1
(

4
0

)
= π

4
.

So,

S1 =

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2


The first rotation gives

S−11 AS1 =

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

 1
√

2 2√
2 3

√
2

2
√

2 1

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2


=

3 2 0
2 3 0
0 0 −1


Again, the largest off diagonal element is al2 = a21 = 2.
The other elements are an a11 = a22 = 3.
Therefore,

θ = 1
2

tan−1
(

4
0

)
= π

4
.

So,

S2 =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


The second rotation gives

S−12 AS2 =

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1

 1
√

2 2√
2 3

√
2

2
√

2 1

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


=

5 0 0
0 1 0
0 0 −1


Now, we have the matrix of eigenvectors as

S = S1S2 =

 1√
2

0 − 1√
2

0 1 0
1√
2

0 1√
2

 1√
2
− 1√

2
0

1√
2

1√
2

0

0 0 1


=


1
2
−1

2
− 1√

2
1√
2

1√
2

0
1
2

1
2
− 1√

2


Hence, the eigenvalues are 5, 1, −1 and the corresponding eigenvectors are the columns
of S.
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Givens Method for Symmetric Matrices

We have noted that in the Jacobi’s method, the elements which were annihilated by a
plane rotation may not remain zero during subsequent rotations. Givens proposed an
algorithm using plane rotations, which preserves the zeros in the off diagonal elements,
once they are created. Let A be a real, symmetric matrix. The Givens method uses the
following steps:

(a) reduce A to a tridiagonal form using plane rotations

(b) form a Sturm sequence, study the changes in sign in the sequences and find the
eigenvalues

(c) find the eigenvector

The reduction to a tridiagonal form is achieved by using the orthogonal transformations
as in the Jacobi method. However, in this case we start with the subspace containing the
elements a22, a23, a32, a33. Perform the plane rotation S−11 AS1 using the orthogonal matrix

S∗1 =

[
cos θ − sin θ
sin θ cos θ

]
(7)

Let the new matrix obtained be A′ = [a′ij].

The angle θ is now obtained by putting a13 = a31 = 0 and not by putting
a23 = a32 = 0 as in Jacobi method. We find

a′13 = −a12 sin θ + a13 cos θ = 0

or, tan θ =
a13
a12

(8)

With this value of θ and performing the plane rotation, we produce zeros in the (3, 1)
and (1, 3) positions. Then we perform rotations in (2, 4) space and put a′14 = a′41 = 0.
This would not affect zeros that have been obtained earlier. Proceeding in this manner,
we put a′15 = a′51 = 0 etc. by performing rotations in (2, 5), · · · , (2, n) planes. Then we
pass on to the elements a′24, a

′
25, · · · , a2n and make them zero by performing rotations in

(3, 4), · · · , (3, n) subspaces. Finally, we produce the matrix

B =



b1 c1
c1 b2 c2

c2 b3 c3
. . .

cn−2 bn−1 cn−1
cn−1 bn
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The number of plane rotations required to bring a matrix of order n to its tridiagonal
form is 1

2
(n − 1)(n − 2). We already know that A and B have the same eigenvalues. If

ci 6= 0, i = 1, 2, · · · , n− 1, then the eigenvalues are distinct. Now, define

fn = |B − λI|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 − λ c1
c1 b2 − λ c2

c2 b3 − λ c3
. . .

cn−2 bn−1 − λ cn−1
cn−1 bn − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
Now, expanding by minors, the sequence {fn} satisfies
f0 = 1, f1 = λ− b1
and

fr = (λ− br)fr−1 − c2r−1fr−2, 2 ≤ r ≤ n (9)

Note that fn is the characteristic equation. If none of the c1, c2, · · · , cn−1 vanish, then
{fn} is a Sturm sequence. That is, if V (x) denotes the number of changes in sign in the
sequence for a given number x, then the number of zeros of fn in [a, b] is V (a) − V (b)
(provided a or b is not a zero of fn). In this way one can approximately compute the
eigenvalues and by repeated bisections, one can improve these estimates.

The eigenvectors of B are then found. If these are determined then the eigenvectors
of A can be determined, since we know that if v and u are the eigenvectors of B and A
respectively, then u = Sv, where S = S1S2 · · ·Sn is the product ofthe orthogonal matrices
used in the plane rotations. The eigenvectors of B may be found as follows. Neglect a
particular equation (say ith) and then solve the remaining equations. This solution usually
satisfies the equation that has been left. Then v is the eigenvector determined from these
solutions and by putting a zero in the ith position. An advantage of the Givens method
is that it takes only a finite number of plane rotations to reduce A to its tridiagonal form.
Example: Use the Givens method to find the eigenvalues of the tridiagonal matrix

A =

 2 −1 0
−1 2 −1
0 −1 2

.

The Sturm sequence is
f0 = 1; f1 = λ− 2; f2 = (λ− 2)f1 − f0 = (λ− 2)2 − 1;
f3 = (λ− 2)f2 − f1 = (λ− 2)3 − 2(λ− 2).

Now, we find

#pdas@rkmvccrahara.ac.in c©pnd
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λ f0 f1 f2 f3 V (λ)
−1 + − + − 3
0 + − + − 3
1 + − 0 + 2
2 + 0 − 0 · · ·
3 + + 0 − 1
4 + + + + 0

Note that f3(2) = 0, so that λ = 2 is an eigenvalue. There is an eigenvalue in (0, 1)
and (3, 4). We now find better estimates of the eigenvalues by repeated bisections. Let us
determine the eigenvalue in (0, 1). We have

λ f0 f1 f2 f3 V (λ)
1
2

+ − + − 3

The eigenvalue is now located in (0.5, 1). Again

λ f0 f1 f2 f3 V (λ)
3
4

+ − + + 2

The eigenvalue is now located in (0.5, 0.75). Then, we have

λ f0 f1 f2 f3 V (λ)
0.625 + − + + 2

The eigenvalue is now located in (0.5, 0.625). So, we have

λ f0 f1 f2 f3 V (λ)
0.5625 + − + − 3

The eigenvalue is now located in (0.5625, 0.625). Again

λ f0 f1 f2 f3 V (λ)
0.59375 + − + + 2

The eigenvalue is now located in (0.5625, 0.59375). We repeat this procedure until the
required accuracy is obtained. The exact value of this eigenvalue is 2−

√
2 ≈ 0.585786.

Finally, we determine the eigenvalue in (3, 4), we have

λ f0 f1 f2 f3 V (λ)
7
2

+ + + + 0

The eigenvalue is now located in (3, 3.5). Again

3.25 + + + − 1

The eigenvalue is now located in (3.25, 3.5). Again

#pdas@rkmvccrahara.ac.in c©pnd
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3.375 + + + − 1

The eigenvalue is now located in (3.375, 3.5). Again

3.4375 + + + + 0

The eigenvalue is now located in (3.375, 3.4375). Again

3.40625 + + + − 1

The eigenvalue is now located in (3.40625, 3.4375). We repeat this procedure until the
required accuracy is obtained. The exact value of this eigenvalue is 2 +

√
2 ≈ 3.414213.

Householder’s Method for Symmetric Matrices

We have noticed in the Givens method that the tridiagonalization is achieved by using
1
2
(n−1)(n−2) plane rotations. However, Householder has given a procedure which requires

essentially half as much computation as the Givens method for the tridiagonalization. The
remaining procedure is same as in the Givens method. In this method A is reduced to the
tridiagonal form by orthogonal transformations representing reflections. The orthogonal
transformations are of the form.

P = I − 2wwT (10)

where w is a column vector, w ∈ Rn, such that

wTw = w2
1 + w2

2 + · · ·+ w2
n = 1 (11)

It can be easily shown that P is symmetric and orthogonal. For that, we have

P T = (I − 2wwT )T = I − 2wwT = P

Therefore,

P TP = (I − 2wwT )(I − 2wwT )

= I − 4wwT + 4wwTwwT

= I

or, P T = P−1

Now, the vectors w are constructed with the first (r − 1) components as zeros, that is,

wTr = (0, 0, · · · , 0, xr, xr+1, · · · , xn) (12)

Since wTr wr = 1, so we have x2r + x2r+1 + · · ·+ x2n = 1.
Therefore, with this choice of wr, from the matrices we have

Pr = I − 2wrw
T
r

#pdas@rkmvccrahara.ac.in c©pnd
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Now, the similarity transformation is given by

P−1r APr = P T
r APr = PrAPr (13)

since Pr is symmetric and orthogonal. We put A = A1 and form successively

Ar = PrAr−1Pr, where r = 2, 3, · · · , n− 1 (14)

At the first transformation, we find xr’s such that we get zeros in the positions
(1, 3), (1, 4), · · · , (1, n) and in the corresponding positions in the first column. There-
fore one rotation brings n− 2 zeros in the first row and column. In the second rotation,
we find xr’s such that we have zeros in (2, 4), (2, 5), · · · , (2, n) positions. The final matrix
is a tridiagonal matrix as in Given’s method. The tridiagonalization is completed with
exactly n− 2 Householder transformations.

Let us illustrate this procedure using a 4× 4 matrix

A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 (15)

We note that, since the transformations being used are orthogonal, the sum of squares of
the elements in any row is invariant. Choose

wT2 = [0, x2, x3, x4], s.t. x22 + x23 + x24 = 1 (16)

Now,

P2 = I − 2w2w
T
2 =


1 0 0 0
0 1− 2x22 −2x2x3 −2x2x4
0 −2x2x3 1− 2x23 −2x3x4
0 −2x2x4 −2x3x4 1− 2x24

 (17)

Now the (1, 3), (1, 4) elements of P2AP2 can become zero only if the corresponding ele-
ments in AP2 are already zero. The first row of AP2 is given by

a11, a12 − 2p1x2, a13 − 2p1x3, a14 − 2p1x4, where p1 = a12x2 + a13x3 + a14x4.

We now require that

a13 − 2p1x3 = 0 (18)

a14 − 2p1x4 = 0 (19)

so that zeros are obtained in the (1, 3), (1, 4) positions. Since the sum of squares of the
elements in any row is invariant under an orthogonal transformation, we have

a211 + a212 + a213 + a214 = a211 + (a12 − 2p1x2)
2

or, a12 − 2p1x2 = ±
√
a212 + a213 + a214 = ±s1 (20)

#pdas@rkmvccrahara.ac.in c©pnd
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Note that s1 is a known quantity. Multiply (20) by x2, (18) by x3, (19) by x4 and then
adding, we get

a12x2 + a13x3 + a14x4 − 2p1 = ±s1x2
which gives

p1 = ∓s1x2, since p1 = a12x2 + a13x3 + a14x4.

Substituting in (20), we get

a12 ± 2s1x
2
2 = ±s1

±2s1x
2
2 = ±s1 − a12

x22 =
1

2

(
1± a12

s1

)
(21)

This determines x2. From (18) and (19) we have

x3 = ∓ a13
2s1x2

(22)

and x4 = ∓ a14
2s1x2

(23)

Usually, we need to find two square roots, one for and another for x2. Since x3 and x4
contain x2 in the denominator, we obtain best accuracy if x2 is large. This can be obtained
by taking suitable sign in (21). Choose

x22 =
1

2

(
1 +

a12 sign(a12)

s1

)
(24)

The sign of the square root is irrelevent and taken as plus sign. Hence

x3 =
a13 sign(a12)

2s1x2
, x4 =

a14 sign(a12)

2s1x2

This transformation produces two zeros in the first row and first column. One more
transformation produces zeros in the (2, 4) and (4, 2) positions. The resulting matrix is
tridiagonal.

QR method

The QR method is the modification of LR or in particular LU method. So to understand
QR method we start from the LR method. Rutishauser proposed the LR transformation
where L is a lower triangular matrix and R is an upper triangular matrix. In the limit,
we get an upper triangular matrix which displays the eigenvalues of A on the leading
diagonal. Starting with the matrix A = A1 we split it into two triangular matrices

A1 = L1R1 (25)

with lii = 1, i = 1, 2, · · · , n. Then form A2 = R1L1. Since A2 = R1L1 = R1A1R
−1
1 ,

then A1 and A2 have the same eigenvalues. We again write

A2 = L2R2 (26)

#pdas@rkmvccrahara.ac.in c©pnd
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with lii = 1, i = 1, 2, · · · , n. Then form A3 = R2L2 so that A2 and A3 have the same
eigenvalues. Proceeding in this way, we get a sequence of matrices A1, A2, A3, · · · which
in general reduces to an upper triangular matrix. If the eigenvalues are real, then they all
lie on the leading diagonal. However, there are difficulties associated with the practical
application of the method.

To avoid some of these difficulties, it was proposed that L be replaced by a unitary
matrix Q. If A is non-singular then there exists a decomposition A = QR where Q is
unitary and R is upper triangular. The QR algorithm is also not simple for practical
application. It is useful when applied to a matrix A in upper Hessenberg form (almost
triangular form)

A =


a11 a12 a13 · · · a1,n−1 a1n
a21 a22 a23 · · · a2,n−1 a2n

a32 a33 · · · a3,n−1 a3n

O
.. . . . .

an,n−1 ann


The number of multiplications and additions in one QR transformation is proportional to
n3 for a full matrix whereas it is only n2 for a Hessenberg matrix. A two step procedure is
recommended, first to reduceA to upper Hessenberg form and then applyQR algorithm to
the upper Hessenberg form. Any matrix can be transformed by similarity transformations
to the upper Hessenberg form.

Baristow Method

Consider the following polynomial equation of degree n

Pn(x) = xn + a1x
n−1 + · · ·+ an−1x+ an = 0. (27)

The Bairstow method extracts a quadratic factor of the form x2+px+q from the polyno-
mial (27), which may give a pair of complex roots or a pair of real roots. If we divide the
polynomial (27) by the quadratic factor x2+px+q, then we obtain a quotient polynomial
Qn−2(x) of degree n− 2 and a remainder term which is a polynomial of degree one, i.e.,
Rx+ S.

Thus
Pn(x) = (x2 + px+ q)Qn−2(x) +Rx+ S (28)

where
Qn−2(x) = xn−2 + b1x

n−3 + · · ·+ bn−3x+ bn−2.

The problem is then to find p and q, such that

R(p, q) = 0 and S(p, q) = 0. (29)

The above equations are two simultaneous equations in two unknowns p and q. Suppose
that (p0, q0) is an initial approximation and that (p0 + ∆p, q0 + ∆q) is the true solution.

#pdas@rkmvccrahara.ac.in c©pnd
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Following the Newton-Raphson method, we obtain

∆p = − RSq − SRq

RpSq −RqSp
(30)

∆q = − RpS − SpR
RpSq −RqSp

, (31)

where Rp, Rq, Sp, Sq are the partial derivatives of R and S with respect to p and q
evaluated at p0, q0.

The coefficients bi, R and S can be determined by comparing the like powers of x in
(28). We obtain

a1 = b1 + p b1 = a1 − p
a2 = b2 + pb1 + q b2 = a2 − pa1 − q
...

...
ak = bk + pbk−1 + qbk−2 bk = ak − pak−1 − qan−2
...

...
an−1 = R + pbn−2 + qbn−3 R = an−1 − pbn−2 − qbn−3
an = S + qbn−2 S = an − qbn−2.

(32)

We now introduce the recursion formula

bk = ak − pak−1 − qan−2, k = 1, 2, · · · , n (33)

where b0 = 1 and b−1 = 0.

Comparing the last two equations with those of (32), we get

R = bn−1
S = bn + pbn−1

(34)

The partial derivatives Rp, Rq, Sp and Sq can be determined by differentiating (33) with
respect to p and q.

We have

−∂bk
∂p

= bk−1 + p
∂bk−1
∂p

+ q
∂bk−2
∂p

, where
∂b0
∂p

=
∂b−1
∂p

= 0 (35)

−∂bk
∂q

= bk−2 + p
∂bk−1
∂q

+ q
∂bk−2
∂q

, where
∂b0
∂q

=
∂b−1
∂q

= 0. (36)

Now putting
∂bk
∂p

= −ck−1, k = 1, 2, · · · , n

in the equation (35), we find

ck−1 = bk−1 − pck−2 − qck−3. (37)

#pdas@rkmvccrahara.ac.in c©pnd
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Again, if we write
∂bk
∂p

= −ck−2,

then the equation (36) gives

ck−2 = bk−2 − pck−3 − qck−4.

Thus, we get a recurrence relation for the determination of ck from bk,

ck = bk − pck−1 − qck−2, k = 1, 2, · · · , n− 1

where c0 = 1 and c−1 = 0.

We obtain

Rp = −cn−2, Sp = bn−1 − cn−1 − pcn−2
Rq = −cn−3, Sq = −cn−2 − pcn−3

Substituting the above values in (30), (31) and simplifying, we get

∆p = − bncn−3 − bn−1cn−2
c2n−2 − cn−3(cn−1 − bn−1)

∆q = −bn−1(cn−1 − bn−1)− bncn−2
c2n−2 − cn−3(cn−1 − bn−1)

The improved values of p0 and q0 are

p1 = p0 + ∆p

q1 = q0 + ∆q

Now for computing bk’s and ck’s we use the following scheme:

1 a1 a2 · · · an−2 an−1 an

−p −p −pb1 · · · −pbn−3 −pbn−2 −pbn−1

−q −q · · · −qbn−4 −qbn−3 −qbn−2

1 b1 b2 · · · bn−2 bn−1 bn

−p −p −pc1 · · · −pcn−3 −pcn−2

−q −q · · · −qcn−4 −qcn−3

1 c1 c2 · · · cn−2 cn−1

#pdas@rkmvccrahara.ac.in c©pnd
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When p and q have been obtained to the desired accuracy, the polynomial Qn−2(x) =
Pn(x)/(x2 + px + q) = xn−2 + b1x

n−4 + · · · + bn2 is called the deflated polynomial. The
coefficients bi, i = 1, 2, · · · , n− 2 are known from the synthetic division procedure. The
next quadratic factor is obtained using this deflated polynomial.

Example: Perform one iteration of the Bairstow method to extract a quadratic factor
x2 + px+ q from the polynomial

x4 + x3 + 2x2 + x+ 1 = 0

using the initial approximations p0 = 0.5, q0 = 0.5.

Solution: Starting with p0 = 0.5 and q0 = 0.5 we obtain

1 1 2 1 1

−0.5 −0.5 −0.25 −0.625 −0.0625

−0.5 −0.5 −0.25 −0.625

1 0.5 1.25 0.125(= b3) 0.3125(= b4)

−0.5 −0.5 0.0 −0.375

−0.5 −0.5 0.0

1 0.0(= c1) 0.75(= c2) −0.25(= c3)

Therefore

∆p = − b4c1 − b3c2
c22 − c1(c3 − b3)

= − 0.3125× 0.0− 0.125× 0.75

(0.75)2 − 0.0(−0.25− 0.125)
= 0.1667

∆q = −b3(c3 − b3)− b4c2
c22 − c1(c3 − b3)

= 0.5

Hence

p1 = p0 + ∆p = 0.5 + 0.1667 = 0.6667

q1 = q0 + ∆q = 0.5 + 0.5 = 1

Thus, the exact values of p and q are 0.6667 and 1.0 respectively.
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