Dynamical system, MSc, Semester III

Phonindra Nath Das

Department of Mathematics Ramakrishna Mission Vivekananda Centenary College, Rahara

Email: phonimath@gmail.com

September 7, 2021

Phonindra Nath Das Department of Mathematics Ran

Online Classes-01

September 7, 2021 1 / 8

1 Flows, trajectories and orbits

September 7, 2021 2/8

- 32

イロト 不得 トイヨト イヨト

The time-evolutionary process may be described as a flow of a vector field. Generally, flow is frequently used for discussing the dynamics as a whole rather than the evolution of a system at a particular point. The solution $x_{t}(t)$ of a system $\dot{x}_{t} = f(x_{t})$ which satisfies $x_{t}(t_{0}) = x_{0}$ gives the past $(t < t_{0})$ and future $(t > t_{0})$ evolutions of the system. Mathematically, the flow is defined by $\phi_{t}(x_{t}) : U - \mathbb{R}^{n}$ where $\phi_{t}(x_{t}) = \phi(t, x_{t})$ is a smooth vector function of $x_{t} \in U \subseteq \mathbb{R}^{n}$ and $t \in I \subseteq \mathbb{R}$ satisfying the equation

Flow

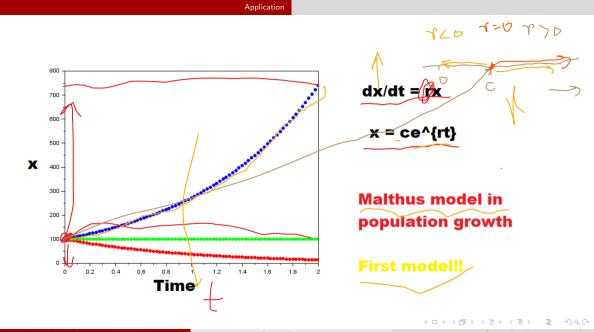
$$\frac{\mathrm{d}}{\mathrm{d}t}\phi_t(\underline{x}\,) = \underbrace{f\left(\phi_t(\underline{x}\,)\right)}_{\simeq}$$

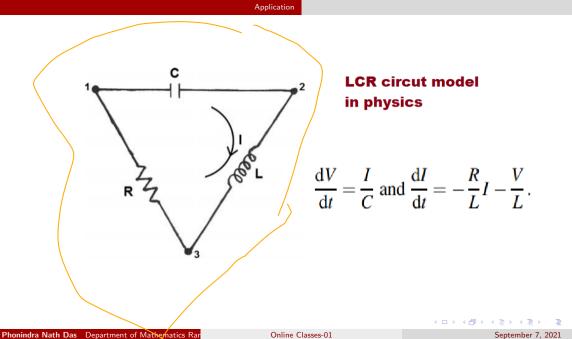
for all t such that the solution through x exists and $\phi(0, x) = x$. The flow $\phi_t(x)$ satisfies the following properties:

(a)
$$\phi_o = I_d$$
, (b) $\phi_{t+s} = \phi_t \circ \phi_s$.

Flows in \mathbb{R} : Consider a one-dimensional autonomous system represented by $\dot{x} = f(x), x \in \mathbb{R}$. We can imagine that a fluid is flowing along the real line with local velocity f(x). This imaginary fluid is called the **phase fluid** and the real line is called the **phase line**. For solution of the system $\dot{x} = f(x)$ starting from an arbitrary initial position x_0 , we place an imaginary particle, called a **phase point**, at x_0 and watch how it moves along with the flow in phase line in varying time t. As time goes on, the phase point (x, t) in the one-dimensional system $\dot{x} = f(x)$ with x(0) = x_0 moves along the x-axis according to some function $\phi(t, x_0)$. The function $\phi(t, x_0)$ is called the **trajectory** for a given initial state x_0 and the set $\{\phi(t, x_0) | t \in I \subseteq \mathbb{R}\}$ is the orbit of $x_0 \in \mathbb{R}$. The set of all qualitative trajectories of the system is called phase portrait.

Flows in \mathbb{R}^2 : Consider a two-dimensional system represented by the following equations $\dot{x} = f(x, y)$, $\dot{y} = g(x, y)$, $(x, y) \in \mathbb{R}^2$. An imaginary fluid particle flows in the plane \mathbb{R}^2 , known as phase plane of the system. The succession of states given parametrically by x = x(t), y = y(t) trace out a curve through some initial point $P(x(t_0), y(t_0))$ is called a **phase path**. The set $\{\phi(t, x_0) | t \in I \subseteq \mathbb{R}\}$ is the orbit of x_0 in \mathbb{R}^2 . There are an infinite number of trajectories that would fill the phase plane when they are plotted. But the qualitative behavior can be determined by plotting a few trajectories with different initial conditions. The phase portrait displays how the qualitative behavior of a system is changing as x and y varies with time t. An orbit is called periodic if x(t+p) = x(t) for some p > 0, for all t. The smallest integer p for which the relation is satisfied is called the prime period of the orbit. Flows in \mathbb{R} cannot have oscillatory or closed path.





September 7, 2021 7/8

Application

Guess what!

where x, y are variables and a, b, $c_{i}e$ are constants.

Now we are in position to study the stability of such a system!!