
Design and Analysis of Algorithms

Dr. Chayan Halder

Assistant Professor

Ramakrishna Mission Vivekananda Centenary College, Kolkata

Programming

What is Programming?

 The communicative technique by which one can instruct a
computing device to perform some task.

Why Programming?

 Automated solution to the problems that can be solved
with the aid of computing devices.

• Less time consuming

• No errors

• Repetitive

A typical programming task can be divided into two phases:

Problem solving phase

produce an ordered sequence of steps that describe

solution of problem

this sequence of steps is called an algorithm

Implementation phase

implement the program in some programming language

Programming

• Problem can be simple or complex

• Solutions of a problem can also be simple or

complex.

• Solutions should have finite number of steps

• The steps should be sequential.

Problem Solving

Problem Solving Example

• Writing

• Pen

• Paper

• Hand

• Boiling water

• Container

• Water

• Heat / Fire

Algorithm

• An algorithm is a step by step recipe for solving an instance of

a problem.

• Every single procedure that a computer performs is an outcome

of some sort of algorithm.

• An algorithm is a precise procedure for solving a problem in

finite number of steps.

• An algorithm states the actions to be executed and the order in

which these actions are to be executed.

• An algorithm is a well ordered collection of clear and simple

instructions of definite and effectively computable operations

that when executed produces a result and stops executing at

some point in a finite amount of time rather than just going on

and on infinitely.

Algorithm

Definition

 An algorithm is a well ordered collection of clear and

simple instructions of definite and effectively

computable operations that when executed produces

a result and stops executing at some point in a finite

amount of time rather than just going on and on

infinitely.

 Various steps in developing Algorithms

 Devising the Algorithm:

 It’s a method for solving a problem. Each step of an

algorithm must be precisely defined and no vague

statements should be used. Pseudo code is used to describe

the algorithm , in less formal language than a programming

language.

 Validating the Algorithm:

The proof of correctness of the algorithm. A human

must be able to perform each step using paper and pencil

by giving the required input , use the algorithm and get the

required output in a finite amount of time.

 Various steps in developing Algorithms

 Expressing the algorithm:

 To implement the algorithm in a programming language.

 The algorithm used should terminate after a finite number

of steps.

Algorithm Example

• Example 1: Write an algorithm to determine a

student’s final grade and indicate whether it is

passing or failing. The final grade is calculated

as the average of four marks.

Algorithm Example

 Step1: Input 4 marks of a student

 Step2: Calculate their average by summing and

dividing by 4

 Step3: If the average is below 50 then “FAIL”

otherwise “PASS”

Algorithm

 Step 1: Input M1,M2,M3,M4

 Step 2: GRADE (M1+M2+M3+M4)/4

 Step 3: if (GRADE < 50) then

 Print “FAIL”

 else

 Print “PASS”

 Step 4: End

Algorithm Example

Algorithm Program

Design part to solve a
Problem

Implementation part of the
algorithm

Domain Knowledge Programming language
Knowledge

Sequential idea of the
whole solution

The in depth
implementation of the
whole solution

Any natural languages can
be used

Only programming
languages are used

Analyse through pen and
paper for input ranges
belong to the domain.

Execute the program to get
the output.

Algorithm is not Hardware
or OS dependent.

Program is Hardware or OS
dependent.

 Efficiency of an algorithm

 Writing efficient programs is what every programmer

hopes to be able to do. But what kinds of programs are

efficient? The question leads to the concept of

generalization of programs.

 Algorithms are programs in a general form. An algorithm

is an idea upon which a program is built. An algorithm

should meet three things:

 It should be independent of the programming language in which

the idea is realized

Every programmer having enough knowledge and experience

to understand it

It should be applicable to inputs of all sizes

 Efficiency of an algorithm

 Efficiency of an algorithm denotes the rate at which an
algorithm solves a problem of size n.

 It is measured by the amount of resources it uses, the time
and the space.

 The time refers to the number of steps the algorithm
executes while the space refers to the number of unit
memory storage it requires.

 An algorithm’s complexity is measured by calculating the
time taken and space required for performing the
algorithm.

 The input size, denoted by n, is one parameter , used to
characterize the instance of the problem.

 The input size m is the number of registers needed to hold
the input (data segment size).

 Time Complexity of an algorithm is the amount of time(or

the number of steps) needed by a program to complete its

task (to execute a particular algorithm)

 The way in which the number of steps required by an

algorithm varies with the size of the problem it is solving.

The time taken for an algorithm is comprised of two times

Compilation Time

Run Time

 Compilation time is the time taken to compile an

algorithm. While compiling it checks for the syntax and

semantic errors in the program and links it with the

standard libraries , your program has asked to.

Time Complexity

 Run Time: It is the time to execute the compiled program.

The run time of an algorithm depend upon the number of

instructions present in the algorithm. Usually we consider,

one unit for executing one instruction.

 The run time is in the control of the programmer , as the

compiler is going to compile only the same number of

statements , irrespective of the types of the compiler used.

 Note that run time is calculated only for executable

statements and not for declaration statements

 Time complexity is normally expressed as an order of

magnitude, eg O(n2) means that if the size of the problem n

doubles then the algorithm will take four times as many

steps to complete.

Time Complexity

Time Complexity of an Algorithm

 Time complexity of a given algorithm can be defined for

computation of function f() as a total number of statements

that are executed for computing the value of f(n).

 Time complexity is a function dependent from the value of

n. In practice it is often more convenient to consider it as a

function from |n|

 Time complexity of an algorithm is generally classified as

three types.

(i) Worst case

(ii) Average Case

(iii) Best Case

 Worst Case: It is the longest time that an algorithm will

use over all instances of size n for a given problem to

produce a desired result.

 Average Case: It is the average time(or average space)

that the algorithm will use over all instances of size n for a

given problem to produce a desired result. It depends on

the probability distribution of instances of the problem.

 Best Case: It is the shortest time (or least space) that the

algorithm will use over all instances of size n for a given

problem to produce a desired result.

Time Complexity

 Space Complexity of a program is the amount of memory

consumed by the algorithm (apart from input and output,

if required by specification) until it completes its

execution.

 The way in which the amount of storage space required by

an algorithm varies with the size of the problem to be

solved.

 The space occupied by the program is generally by the

following:

A fixed amount of memory occupied by the space for the program

code and space occupied by the variables used in the program.

A variable amount of memory occupied by the component variable

whose size is dependent on the problem being solved. This space

increases or decreases depending upon whether the program uses

iterative or recursive procedures.

 Space Complexity

 The memory taken by the instructions is not in the control

of the programmer as its totally dependent upon the

compiler to assign this memory.

 But the memory space taken by the variables is in the

control of a programmer. More the number of variables

used, more will be the space taken by them in the memory.

 Space complexity is normally expressed as an order of

magnitude, eg O(n2)means that if the size of the problem n

doubles then four times as much working storage will be

needed.

 There are three different spaces considered for determining

the amount of memory used by the algorithm.

 Space Complexity

 Space Complexity

 Instruction Space is the space in memory occupied by the
compiled version of the program. We consider this space
as a constant space for any value of n. We normally ignore
this value , but remember that is there. The instruction
space is independent of the size of the problem

 Data Space is the space in memory , which used to hold
the variables , data structures, allocated memory and other
data elements. The data space is related to the size of the
problem.

 Environment Space is the space in memory used on the run
time stack for each function call. This is related to the run
time stack and holds the returning address of the previous
function. The memory each function utilises on the stack is
a constant as each item on the stack has a return value and
pointer on it.

 Algorithm Analysis

• Code each algorithm and run them to see how long they take.

• Problem: How will you know if there is a better program or

whether there is no better program?

• What will happen when the number of inputs are high.

 Algorithm Analysis

• Develop a model of the way computers work and compare

how the algorithms behave in the model.

• Goal: To be able to predict performance at a coarse level.

That is, to be able to distinguish between good and bad

algorithms.

• Another benefit: when assumptions change, we can predict

the effects of those changes.

 Algorithm Analysis

• As computers get faster and problem sizes get bigger

Analysis will become more important.

• Why?

 The difference between good and bad algorithms will get

bigger.

 Algorithm Analysis

How to measure the Algorithm Performance

 What metric should be used to judge algorithms?

 Length of the program (lines of code)

 Memory required

 Running time

 Running time is the dominant standard.

 Quantifiable and easy to compare

 Often the critical bottleneck

